scholarly journals Experimental Measurement and Numerical Study of Particle Deposition in Highly Idealized Mouth-Throat Models

2006 ◽  
Vol 40 (5) ◽  
pp. 361-372 ◽  
Author(s):  
Yu Zhang ◽  
Tze Luck Chia ◽  
Warren H. Finlay
2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110178
Author(s):  
Zhengang Liu ◽  
Weinan Diao ◽  
Zhenxia Liu ◽  
Fei Zhang

Particle deposition could decrease the aerodynamic performance and cooling efficiency of turbine vanes and blades. The particle motion in the flow and its temperature are two important factors affecting its deposition. The size of the particle influences both its motion and temperature. In this study, the motion of particles with the sizes from 1 to 20 μm in the first stage of a turbine are firstly numerically simulated with the steady method, then the particle deposition on the vanes and blades are numerically simulated with the unsteady method based on the critical viscosity model. It is discovered that the particle deposition on vanes mainly formed near the leading and trailing edge on the pressure surface, and the deposition area expands slowly to the whole pressure surface with the particle size increasing. For the particle deposition on blades, the deposition area moves from the entire pressure surface toward the tip with the particle size increasing due to the effect of rotation. For vanes, the particle capture efficiency increases with the particle size increasing since Stokes number and temperature of the particle both increase with its size. For blades, the particle capture efficiency increases firstly and then decreases with the particle size increasing.


Author(s):  
Z. Wu ◽  
J. B. Young

This paper deals with particle deposition onto solid walls from turbulent flows. The aim of the study is to model particle deposition in industrial flows, such as the one in gas turbines. The numerical study has been carried out with a two fluid approach. The possible contribution to the deposition from Brownian diffusion, turbulent diffusion and shear-induced lift force are considered in the study. Three types of turbulent two-phase flows have been studied: turbulent channel flow, turbulent flow in a bent duct and turbulent flow in a turbine blade cascade. In the turbulent channel flow case, the numerical results from a two-dimensional code show good agreement with numerical and experimental results from other resources. Deposition problem in a bent duct flow is introduced to study the effect of curvature. Finally, the deposition of small particles on a cascade of turbine blades is simulated. The results show that the current two fluid models are capable of predicting particle deposition rates in complex industrial flows.


1981 ◽  
Vol 48 (4) ◽  
pp. 707-716
Author(s):  
L. M. Srivastava ◽  
V. P. Srivastava

The flow of a binary mixture of chemically inert incompressible, Newtonian fluids over an infinite plate, set into motion in its plane by impulse and by oscillation, is studied. The binary mixture consists of (i) two different viscous density nonstratified fluids, and (ii) two different viscous density stratified fluids. The exact solutions are obtained using two methods, (i) Laplace transform and (ii) Hankel transform. To further study the velocities and the wall shear stress, asymptotic expansion are found for small and large times. Some other results of physical importance such as results for noninteracting fluids, strongly interacting fluids, and extremely different fluids are also derived and compared analytically with other results. Finally, to gain an insight into the patterns of the flow, numerical study of the results has been made in detail using digital computer. A strong motivation of the present analysis has been the hope that such a theory of fluids is useful in providing some insight in rheological properties of complex fluids as polymers, liquid crystals and, in particular, blood in the vessels of small diameter. Also the theory of fluids might provide an improved understanding of such diverse subjects as diffusion of proteins, swimming of micro-organism and particle deposition in respiratory tract.


2020 ◽  
Vol 24 (9) ◽  
pp. 39-43
Author(s):  
O.V. Soloveva ◽  
S.A. Solovev ◽  
R.R. Yafizov

In this work we carried out a numerical study of the gas flow through an open cell foam material with solid-state partitions and partitions containing micropores. The effect of a geometry change by adding micropores on the pressure drop, particle deposition efficiency, and filter quality factor is estimated. The results showed that the addition of micropores positively affects the filtering and hydrodynamic properties of the highly porous material for the same macroporosity of the medium, and for the case of total porosity of the medium, the material with micropores allows one to obtain an increased value of the deposition efficiency and filter quality factor for small particles.


2021 ◽  
Author(s):  
Pouyan Ezzatian

Experimental measurement of Soret coefficient and numerical study on effect of g-jitter in liquid mixtures


2021 ◽  
Author(s):  
Pouyan Ezzatian

Experimental measurement of Soret coefficient and numerical study on effect of g-jitter in liquid mixtures


Author(s):  
Qi Sun ◽  
Gang Zhao ◽  
Wei Peng ◽  
Suyuan Yu

The study on the deposition of graphite dust is significant to the safety of High-Temperature Gas-cooled Reactor (HTGR) due to potential accident such as localized hot-spots and intensity change which is caused by the graphite dust generated by abrasion of fuel elements. Based on the steady flow and three-dimensional face centered structures of fuel pebble bed, the discrete phase model (DPM) were applied to simulate trajectory of graphite dust in conditions of HTGR. To determinate the deposition of particle, the present study introduces a rebound condition with critical velocity by a user defined function. The particle trajectories show most of particle deposition can be summed up as the effect of backflow region, turbulent diffusion and inertial impact. The original trap condition overestimates the deposition fraction especially for large particles compared with involving rebound condition. In addition, the trend of deposition fraction shows as the dimeter of particle increases, deposition fraction decreases first and then increases.


2019 ◽  
Author(s):  
Daniel Orea ◽  
Thien Nguyen ◽  
Rodolfo Vaghetto ◽  
N. K. Anand ◽  
Yassin A. Hassan ◽  
...  

Abstract This paper presents an experimental study of hydrodynamics flow characteristics and particle transport in a test facility. Experimental measurements of fluid flow and particle deposition are studied under isothermal conditions using particle image velocimetry (PIV) and particle tracking velocimetry (PTV) techniques. These non-intrusive optical measurement techniques have been applied in experiment conditions of Reynolds number Re = 5,077 in a 3-inch square channel and 72-inches in total length. The fluid within the channel is air seeded with aerosol droplets while the measurements of particle transport is facilitated using surrogate particles dispersed in the channel flow. Results obtained from the PIV and PTV measurements included the hydrodynamics fluid flow characteristics, and characteristics of particle transports, such as particle velocity, particle diameter distributions and particle concentration profiles. Results from the preliminary test have shown 11.08% deposition of particles. To supplement this experimental work, upstream fluid flow characteristics were provided as boundary conditions for a comparable numerical study.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Gorazd Cvetič ◽  
C. S. Kim ◽  
Donghun Lee ◽  
Dibyakrupa Sahoo

Abstract The disagreement between the standard model prediction and the experimental measurement of muon anomalous magnetic moment can be alleviated by invoking an additional particle which is either a vector boson (X1) or a scalar (X0). This new particle, with the mass mX ≲ 2mμ, can be searched for in the decay J/ψ → μ−μ+X, where X is missing. Our numerical study shows that the search is quite feasible at the BESIII experiment in the parameter space allowed by muon g − 2 measurements.


Sign in / Sign up

Export Citation Format

Share Document