scholarly journals Exploratory Analysis for Locations of an All-Season Access Corridor Through Northwest Territories' Slave Geological Province for Natural Resource Mining Transportation Using Least Cost Analysis

2021 ◽  
Author(s):  
Katrina Mavrou

This paper examines the preliminary development plan for the Slave Geological Province Access Corridor project, and evaluates the identified criteria and constraints referring to economic, environmental and social sustainability. The corridor project was first introduced in the 1970’s, and in March 2019 progress was made when the Federal government granted $3.4 million towards preliminary work for the all-season corridor, with an additional $2.7 million contributed from other environmental agencies and developers to assist in the preliminary construction of the all-season corridor (CBC News, 2019). Due to the unpredictability of seasonal roads, especially in a time of global climate change and weather extremes, an all-season road is significantly more reliable and will provide benefits to the economy and mining industry of the Northwest Territories. The land is rich in natural resources and creating an all-season road would greatly increase accessibility to northern Canada, directly improving livelihood and future exploration. This paper proposes potential methods for creating a least cost path suitability using geographical information systems via examination of economic, environmental and social factors at various levels. This methodology produced six pathways using six cost surfaces. More detailed criteria layers produced complex heterogeneous cost surfaces that hold a heavy influence in creating barriers in the cost surface layer. Broad, more course data created cost surfaces will continuous cost cells, where cell costs were not as sporadically mixed. The pathways produced in this report are not intended for actual use; rather the methodology, models and scripts should be used as framework for the proposal of the Slave Geological Corridor.

2021 ◽  
Author(s):  
Katrina Mavrou

This paper examines the preliminary development plan for the Slave Geological Province Access Corridor project, and evaluates the identified criteria and constraints referring to economic, environmental and social sustainability. The corridor project was first introduced in the 1970’s, and in March 2019 progress was made when the Federal government granted $3.4 million towards preliminary work for the all-season corridor, with an additional $2.7 million contributed from other environmental agencies and developers to assist in the preliminary construction of the all-season corridor (CBC News, 2019). Due to the unpredictability of seasonal roads, especially in a time of global climate change and weather extremes, an all-season road is significantly more reliable and will provide benefits to the economy and mining industry of the Northwest Territories. The land is rich in natural resources and creating an all-season road would greatly increase accessibility to northern Canada, directly improving livelihood and future exploration. This paper proposes potential methods for creating a least cost path suitability using geographical information systems via examination of economic, environmental and social factors at various levels. This methodology produced six pathways using six cost surfaces. More detailed criteria layers produced complex heterogeneous cost surfaces that hold a heavy influence in creating barriers in the cost surface layer. Broad, more course data created cost surfaces will continuous cost cells, where cell costs were not as sporadically mixed. The pathways produced in this report are not intended for actual use; rather the methodology, models and scripts should be used as framework for the proposal of the Slave Geological Corridor.


Rangifer ◽  
2009 ◽  
Vol 27 (2) ◽  
pp. 107-119
Author(s):  
Henrik Lundqvist ◽  
Öje Danell

The 51 reindeer herding districts in Sweden vary in productivity and prerequisites for reindeer herding. In this study we characterize and group reindeer herding districts based on relevant factors affecting reindeer productivity, i.e. topography, vegetation, forage value, habitat fragmentation and reachability, as well as season lengths, snow fall, ice-crust probability, and insect harassment, totally quantified in 15 variables. The herding districts were grouped into seven main groups and three single outliers through cluster analyses. The largest group, consisting of 14 herding districts, was further divided into four subgroups. The range properties of herding districts and groups of districts were characterized through principal component analyses. By comparisons of the suggested grouping of herding districts with existing administrative divisions, these appeared not to coincide. A new division of herding districts into six administrative sets of districts was suggested in order to improve administrative planning and management of the reindeer herding industry. The results also give possibilities for projections of alterations caused by an upcoming global climate change. Large scale investigations using geographical information systems (GIS) and meteorological data would be helpful for administrative purposes, both nationally and internationally, as science-based decision tools in legislative, economical, ecological and structural assessments. Abstract in Swedish / Sammanfattning: Multivariat gruppering av svenska samebyar baserat på renbetesmarkernas grundförutsettningar Svenska renskötselområdet består av 51 samebyar som varierar i produktivitet och förutsättningar för renskötsel. Vi analyserade variationen mellan samebyar med avseende på 15 variabler som beskriver topografi, vegetation, betesvärde, fragmentering av betesmarker, klimat, skareförekomst och aktivitet av parasiterande insekter och vi föreslår en indelning av samebyar i tio grupper. Den största gruppen, som bestod av 14 samebyar, delades vidare in i 4 undergrupper. Klusteranalyser med 4 olika linkage-varianter användes till att gruppera samebyarna. Principalkomponentsanalys användes för att kartlägga undersökta variabler och de resulterande samebygruppernas karaktär. Samebygrupperna följde inte länsgränser och tre samebyar föll ut som enskilda grupper. Denna undersökning ger underlag för jämförelser mellan samebyar med beaktande av likheter och olikheter i fråga om produktivitet och funktionella särdrag istället för länsgränser och historik. Vi föreslår en ny administrativ indelning i sex områden som skulle kunna fungera som ett alternativt underlag för planering och beslut som rör produktionsaspekter i rennäringen. Resultaten ger också underlag för förutsägelser av förändringar i samebyars produktionsförutsättningar till följd av klimatförändringar.


Author(s):  
B. L. Turner II ◽  
D. R. Foster

Frontiers advance and retreat, both figuratively and literally. At this moment they are advancing in three ways relevant to the subject of this book and the ongoing project on which it is based. First, after more than a century of reductionist hegemony, various science communities worldwide increasingly recognize the need to improve complementary, synthesis understanding—a way of putting the reductionist pieces of the problem back together again in order to understand how the ‘whole’ system works and to identify the emergent properties that follow from the complex interactions of the pieces. Synthesis understanding is not, of course, new. In the late eighteenth century, Immanuel Kant argued for it as one of the pillars of science in the reorganization of knowledge in the European academy (Turner 2002a) and designated geography as one of the ‘synthesis sciences’. Its contemporary rediscovery, however, rests in the science of global environmental change (Lawton 2001; Steffen et al. 2002), especially efforts to model complex systems, such as those in ocean–atmosphere–land interactions, and has been expanded by emerging research agendas seeking to couple human and environment systems, often registered under the label of ‘sustainability science’ (e.g. Kates et al. 2001; NRC 1999). Second, within these developments landuse and land-cover change (or, simply, land change) is singled out because of its centrality to a wide range of environmental concerns, including global climate change, regional–local hydrological impacts, biodiversity, and, of course, human development and ecosystem integrity (e.g. Brookfield 1995; NRC 2000; Watson et al. 2001). The need to advance an integrated land-change science is also increasingly recognized, one in which human, ecological, and remote sensing and geographical information systems (GIS) sciences are intertwined in problem-solving (Liverman et al. 1998; Klepeis and Turner 2001; Turner 2002b). And central to this effort is the need to advance geographically (spatially) explicit land-change models that can explain and project coupled human-ecological systems, and thus serve a wide range of research and assessment constituencies, from carbon to biodiversity to human vulnerability (IGBP 1999; Irwin and Geoghegan 2001; Kates et al. 2001; Liverman et al. 1998; Veldkamp and Lambin 2001). These two developments—synthesis science and integrated land science directed towards geographically explicit land-change models—constitute the broader intellectual and research frontiers to which this work contributes.


2018 ◽  
Vol 39 (1) ◽  
pp. 101-108 ◽  
Author(s):  
Aleksandra Mierzejowska ◽  
Monika Żogała

AbstractFrom the beginning of human existence, man collected and analysed information about the space that surrounded him. Nowadays, due to the huge amount of data, it would be impossible without geographic information systems. According to the definition, the main function of GIS (Geographic Information Systems) is to collect, process, integrate, analyse and present data directly collected in the database or obtained through analysis. The basis of each information system’s functioning is the collection of relevant data about real-world objects, in terms of their completeness, quality and reliability. Due to the very rapid development of information technology, GIS systems have found a wide application, eg. in spatial planning, real estate management, administration, infrastructure management and many other areas of life. The authors within the article have made a detailed review of the current using of GIS, with particular emphasis on the mining industry. In the latter, particular attention was focused on the use of this type of tools to monitor and analyse the effects of mining activities. At the same time, the authors indicated new possibilities related to the application of geographic information systems in this branch.


2011 ◽  
Vol 6 (2) ◽  
Author(s):  
Sarah Cornelius ◽  
Ian Heywood

Geographical Information Systems (GIS) are computer-based tools for the input, management, analysis, modelling and display of geographical data. GIS are applied in a wide range of organizations and disciplines, including central and local government, environmental agencies, transport planning and vehicle navigation, education and research, utilities management, resource management, and the financial and retail sectors. GIS is a field of constantly changing technology, and it has been recognized that GIS education needs to be more than a 'once in a lifetime' event (Muller, 1993). Consequently, GIS teachers have developed computer-based materials for learners at all levels, from school students to postgraduates, and for the independent professional updating their skills and knowledge. To date, these materials have followed a number of approaches. Initially demonstrations of GIS software and its capabilities addressed the need to increase awareness of GIS and its applications (DoE, 1987). Arcdemo (Green, 1987) was an innovative early example, providing a demonstration of the software package Arc/Info online. Training in particular software, and the need for hands-on experience, have been addressed with the production of software-specific educational materials which use primarily traditional text-based instructions for exercises with specially prepared data. Examples include Getting started in GIS (Langford, 1993), the Unitar workbooks for Idrisi (for example McKendry et al, 1992) and Understanding GIS: the Arc/Info Method (ESRI, 1990). These have proved particularly popular, and by directing learners through structured exercises allow new users to become familiar with complex software in a relatively short time. More recently, they have migrated to CD-ROM, with training materials such as Getting to know Arcview (ESRI, 1995) provided in this format, and combining software, data and demonstrations.DOI:10.1080/0968776980060204


Author(s):  
Verónica Lango-Reynoso ◽  
Karla Teresa González-Figueroa ◽  
Fabiola Lango-Reynoso ◽  
María del Refugio Castañeda-Chávez ◽  
Jesús Montoya-Mendoza

Objective: This article describes and analyzes the main concepts of coastal ecosystems, these as a result of research concerning land-use change assessments in coastal areas. Design/Methodology/Approach: Scientific articles were searched using keywords in English and Spanish. Articles regarding land-use change assessment in coastal areas were selected, discarding those that although being on coastal zones and geographic and soil identification did not use Geographic Information System (GIS). Results: A GIS is a computer-based tool for evaluating the land-use change in coastal areas by quantifying variations. It is analyzed through GIS and its contributions; highlighting its importance and constant monitoring. Limitations of the study/Implications: This research analyzes national and international scientific information, published from 2007 to 2019, regarding the land-use change in coastal areas quantified with the digital GIS tool. Findings/Conclusions: GIS are useful tools in the identification and quantitative evaluation of changes in land-use in coastal ecosystems; which require constant evaluation due to their high dynamism.


2016 ◽  
Vol 78 ◽  
pp. 203-209 ◽  
Author(s):  
K.J. Hutchinson ◽  
D.R. Scobie ◽  
J. Beautrais ◽  
A.D. Mackay ◽  
G.M. Rennie ◽  
...  

To develop a protocol to guide pasture sampling for estimation of paddock pasture mass in hill country, a range of pasture sampling strategies, including random sampling, transects and stratification based on slope and aspect, were evaluated using simulations in a Geographical Information Systems computer environment. The accuracy and efficiency of each strategy was tested by sampling data obtained from intensive field measurements across several farms, regions and seasons. The number of measurements required to obtain an accurate estimate was related to the overall pasture mass and the topographic complexity of a paddock, with more variable paddocks requiring more samples. Random sampling from average slopes provided the best balance between simplicity and reliability. A draft protocol was developed from the simulations, in the form of a decision support tool, where visual determination of the topographic complexity of the paddock, along with the required accuracy, were used to guide the number of measurements recommended. The protocol was field tested and evaluated by groups of users for efficacy and ease of use. This sampling protocol will offer farmers, consultants and researchers an efficient, reliable and simple way to determine pasture mass in New Zealand hill country settings. Keywords: hill country, feed budgeting, protocol pasture mass, slope


2020 ◽  
pp. 78-98
Author(s):  
T. V. Kotova

Proceedings of the International conference (ИнтерКарто. ИнтерГИС, Russia) devoted to geographical information systems for sustainable development of territories have been published annually since 1994. The articles discuss theoretical and methodological aspects of geoinformation support for environmental, economic and social aspects of sustainable de­velop­ment, issues of geoinformatics, cartography, remote sensing of the Earth, problems of environmental sustainability and environmental impact assessment. Over a quarter of a century, the conference proceedings got more than 125 articles related to the use of geoinformation technologies to the study and mapping of vegetation. The review of proceedings gives the concrete examples how to solve problems of vegetation mapping using GIS, it is focused on publications providing some examples of GIS appli­cation to the vegetation studies. The review is organized into thematic sections according the field of application of Geoinformatics: 1.Vegetation, 2. Dynamics, state and ecological functions of vegetation, 3. Biodiversity and its assessment, 4. Plant resources, 5. Monitoring of vegetation. The Vegetation section contains publications on vegetation studies and mapping performed for some regions of Russia — the North of the Far East, the Republic of Sakha (Yaku­tia), the Tyva Republic, Central Siberia, and others. More than half of the articles are devoted to vegetation dynamics, state and ecological functions of vegetation at different hierarchical levels. Some papers present the results of the studies based on new types of information sources (photographs) and visualization methods (animation). The use of geoinformation technologies to study biological diversity was included in the agenda of five conference sessions and later reflected in more than ten publications. They cover the development and creation of GIS, the use of geoinformation technologies for the analysis, assessment and mapping of biodiversity, for its monitoring and conservation. Quite a large number of articles are devoted to the study of forest resources. GIS technologies were used to solve problems of forest management, cartometric analysis of forested areas, determination of taxation indicators, systematization of forest conditions, etc. Examples of geoinformation versatile research for medicinal plant resources are given to assess their quality, resources and productivity in the region, to identify growing areas, including ones to be protected. Most of the published materials concerning to vegetation monitoring mainly relate to forests and forest management.


Sign in / Sign up

Export Citation Format

Share Document