scholarly journals Study of power line communication modems for automotive communication networks

Author(s):  
Peter Nisbet

Power line communication (PLC) technology has become very attractive in the automotive sector. As vehicle manufacturers aim to produce vehicles with improved fuel economy, comfort and technology, they are limited by current vehicle communication networks due to increased bulk and complexity. PLC technology has been suggested as a solution for this issue by utilizing existing power wires as a communication channel. However reliability is a big challenge with PLC technology, especially with critical systems such as braking, steering and engine control. This thesis studies the feasibility, reliability and possible improvements of PLC for controlling vehicle subsystems such as heating, ventilation and air conditioning (HVAC) system. In order to determine feasibility, several modems were examined for cost and ease of implementation. After selecting a modem solution, the PLC prototype modem was tested on an HVAC system test bed to control various fans, blowers and pumps over a DC power line. The PLC solution was then tested using a 2003 Ford Focus ZTS and a 2011 Ford Edge SE. The tests consisted of repeatedly sending a code from a transmitter connected to the vehicle battery while a receiver was connected to a power port inside the vehicle. The tests were run in several vehicle states e.g. Off, electronics on engine off and engine idle. The results from the tests showed that communication can be established over a vehicle power line with reasonable cost and ease. However reliability of the proposed solution needs to be improved before it can be implemented in vehicles. To improve performance of the proposed PLC solution, an impedance matching network for PLC was proposed. From current research an adaptive matching network utilizing active inductors and capacitor banks was designed and simulated. The designed matching network was simulated with several different automotive loads such as a vehicle battery and various lights. Simulations results showed the proposed matching network was capable of matching impedances with all the simulated automotive loads. When the circuit was built up and tested, there were issues with stability and cost of construction. The results show that more work needs to be done before PLC can become a suitable solution in vehicle communication network. With improvements such as impedance matching, line drive ability and robust modulation schemes, it won't be long before PLC will be a viable vehicle network solution.

2021 ◽  
Author(s):  
Peter Nisbet

Power line communication (PLC) technology has become very attractive in the automotive sector. As vehicle manufacturers aim to produce vehicles with improved fuel economy, comfort and technology, they are limited by current vehicle communication networks due to increased bulk and complexity. PLC technology has been suggested as a solution for this issue by utilizing existing power wires as a communication channel. However reliability is a big challenge with PLC technology, especially with critical systems such as braking, steering and engine control. This thesis studies the feasibility, reliability and possible improvements of PLC for controlling vehicle subsystems such as heating, ventilation and air conditioning (HVAC) system. In order to determine feasibility, several modems were examined for cost and ease of implementation. After selecting a modem solution, the PLC prototype modem was tested on an HVAC system test bed to control various fans, blowers and pumps over a DC power line. The PLC solution was then tested using a 2003 Ford Focus ZTS and a 2011 Ford Edge SE. The tests consisted of repeatedly sending a code from a transmitter connected to the vehicle battery while a receiver was connected to a power port inside the vehicle. The tests were run in several vehicle states e.g. Off, electronics on engine off and engine idle. The results from the tests showed that communication can be established over a vehicle power line with reasonable cost and ease. However reliability of the proposed solution needs to be improved before it can be implemented in vehicles. To improve performance of the proposed PLC solution, an impedance matching network for PLC was proposed. From current research an adaptive matching network utilizing active inductors and capacitor banks was designed and simulated. The designed matching network was simulated with several different automotive loads such as a vehicle battery and various lights. Simulations results showed the proposed matching network was capable of matching impedances with all the simulated automotive loads. When the circuit was built up and tested, there were issues with stability and cost of construction. The results show that more work needs to be done before PLC can become a suitable solution in vehicle communication network. With improvements such as impedance matching, line drive ability and robust modulation schemes, it won't be long before PLC will be a viable vehicle network solution.


IEEE Network ◽  
2020 ◽  
Vol 34 (2) ◽  
pp. 262-269
Author(s):  
Yuwen Qian ◽  
Long Shi ◽  
Jun Li ◽  
Xiangwei Zhou ◽  
Feng Shu ◽  
...  

Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 571 ◽  
Author(s):  
Hongshan Zhao ◽  
Weitao Zhang ◽  
Yan Wang

The characteristic impedance of a power line is an important parameter in power line communication (PLC) technologies. This parameter is helpful for understanding power line impedance characteristics and achieving impedance matching. In this study, we focused on the characteristic impedance matrices (CIMs) of the medium-voltage (MV) cables. The calculation and characteristics of the CIMs were investigated with special consideration of the grounded shields and armors, which are often neglected in current research. The calculation results were validated through the experimental measurements. The results show that the MV underground cables with multiple grounding points have forward and backward CIMs, which are generally not equal unless the whole cable structure is longitudinally symmetrical. Then, the resonance phenomenon in the CIMs was analyzed. We found that the grounding of the shields and armors not only affected their own characteristic impedances but also those of the cores, and the resonance present in the CIMs should be of concern in the impedance matching of the PLC systems. Finally, the effects of the grounding resistances, cable lengths, grounding point numbers, and cable branch numbers on the CIMs of the MV underground cables were discussed through control experiments.


Sign in / Sign up

Export Citation Format

Share Document