Seasonally variable relationships between surface water temperature and inflow in the upper San Francisco Estuary

2021 ◽  
Author(s):  
Samuel M. Bashevkin ◽  
Brian Mahardja

Water temperature and inflow are key environmental drivers in aquatic systems that are linked through a causal web of factors including climate, weather, water management, and their downstream linkages. However, we do not yet fully understand the relationship between inflow and water temperature, especially in complex managed systems such as estuaries. The San Francisco Estuary is the center of a critical water supply infrastructure and home to a deteriorating ecosystem with several declining fish species at the warm edge of their thermal range. We used generalized additive modeling of long-term monitoring data to evaluate the relationship between inflow and water temperature along with its spatio-seasonal variability. Most commonly, we found a negative temperature-inflow relationship in which water temperatures increased as inflow decreased, up to 2 °C from high to low-inflow years. However, the opposite (positive) relationship was observed in the winter months, and in the western (downstream) regions from July-September, up to -1.2 °C from high to low-inflow years. These results were upheld by models that included the long-term temperature trend or used salinity as a proxy for location. Upstream factors likely played the biggest role in the summer when local precipitation is negligible, while local precipitation and the related weather conditions may drive much of the winter pattern. Although further mechanistic studies are needed to infer the direct effect of dam releases on water temperatures, these results provide a broader understanding of the impacts of flood and drought dynamics for those tasked with managing estuarine ecosystems.

2021 ◽  
Author(s):  
Samuel M. Bashevkin ◽  
Brian Mahardja ◽  
Larry R. Brown

Temperature is a key controlling variable from subcellular to ecosystem scales. Thus, climatic warming is expected to have broad impacts, especially in economically and ecologically valuable systems such as estuaries. The heavily managed upper San Francisco Estuary (SFE) supplies water to millions of people and is home to fish species of high conservation, commercial, and recreational interest. Despite a long monitoring record (> 50 years), we do not yet know how water temperatures have already changed or how trends vary spatially or seasonally. We fit generalized additive models on an integrated database of discrete water temperature observations to estimate long-term trends with spatio-seasonal variability. We found that water temperatures have increased 0.017 °C/year on average over the past 50 years. Rates of temperature change have varied over time, but warming was predominant. Temperature increases were most widespread in the late-fall to winter (November to February) and mid-spring (April to June), coinciding with the winter development of juvenile Chinook Salmon and spring spawning window of the endangered Delta Smelt. Warming was fastest in the northern regions, a key fish migration corridor with important tidal wetland habitat. However, no long-term temperature trends were detected in October and were only observed in some regions in May, July, and August. These results can help identify optimal areas for restoration or refugia to buffer the effects of a warming climate, and the methods can be leveraged to understand the spatiotemporal variability in climate warming patterns in other aquatic systems.


Author(s):  
Vanessa Tobias ◽  

In fisheries monitoring, catch is assumed to be a product of fishing intensity, catchability, and availability, where availability is defined as the number or biomass of fish present and catchability refers to the relationship between catch rate and the true population. Ecological monitoring programs use catch per unit of effort (CPUE) to standardize catch and monitor changes in fish populations; however, CPUE is proportional to the portion of the population that is vulnerable to the type of gear used in sampling, which is not necessarily the entire population. Programs often deal with this problem by assuming that catchability is constant, but if catchability is not constant, it is not possible to separate the effects of catchability and population size using monitoring data alone. This study uses individual-based simulation to separate the effects of changing environmental conditions on catchability and availability in environmental monitoring data. The simulation combines a module for sampling conditions with a module for individual fish behavior to estimate the proportion of available fish that would escape from the sample. The method is applied to the case study of the well monitored fish species Delta Smelt (Hypomesus transpacificus) in the San Francisco Estuary, where it has been hypothesized that changing water clarity may affect catchability for long-term monitoring studies. Results of this study indicate that given constraints on Delta Smelt swimming ability, it is unlikely that the apparent declines in Delta Smelt abundance are the result of changing water clarity affecting catchability.


Author(s):  
Vanessa Tobias

In fisheries monitoring, catch is assumed to be a product of fishing intensity, catchability, and availability, where availability is defined as the number or biomass of fish present and catchability refers to the relationship between catch rate and the true population. Ecological monitoring programs use catch per unit of effort (CPUE) to standardize catch and monitor changes in fish populations; however, CPUE is proportional to the portion of the population that is vulnerable to the type of gear that is used in sampling, which is not necessarily the entire population. Programs often deal with this problem by assuming that catchability is constant, but if catchability is not constant, it is not possible to separate the effects of catchability and population size using monitoring data alone. This study uses individual-based simulation to separate the effects of changing environmental conditions on catchability and availability in environmental monitoring data. The simulation combines a module for sampling conditions with a module for individual fish behavior to estimate the proportion of available fish that would escape from the sample. The method is applied to the case study of the well-monitored fish species Delta Smelt (Hypomesus transpacificus) in the San Francisco Estuary, where it has been hypothesized that changing water clarity may affect catchability for long-term monitoring studies. Results of this study indicate that given constraints on Delta Smelt swimming ability, it is unlikely that the apparent declines in Delta Smelt abundance are due to an effect of changing water clarity on catchability.


2021 ◽  
pp. 148-171
Author(s):  
Trishelle L. Tempel ◽  
Timothy D. Malinich ◽  
Jillian Burns ◽  
Arthur Barros ◽  
Christina E. Burdi ◽  
...  

Author(s):  
Brock Huntsman ◽  
◽  
Federick Feyrer ◽  
Matthew Young ◽  
◽  
...  

Resource managers often rely on long-term monitoring surveys to detect trends in biological data. However, no survey gear is 100% efficient, and many sources of bias can be responsible for detecting or not detecting biological trends. The SmeltCam is an imaging apparatus developed as a potential sampling alternative to long-term trawling gear surveys within the San Francisco Estuary, California, to reduce handling stress on sensitive species like the Delta Smelt (Hypomesus transpacificus). Although believed to be a reliable alternative to closed cod-end trawling surveys, no formal test of sampling efficiency has been implemented using the SmeltCam. We used a paired deployment of the SmeltCam and a conventional closed cod-end trawl within the Napa River and San Pablo Bay, a Bayesian binomial N-mixture model, and data simulations to determine the sampling efficiency of both deployed gear types to capture a Delta Smelt surrogate (Northern Anchovy, Engraulis mordax) and to test potential bias in our modeling framework. We found that retention efficiency—a component of detection efficiency that estimates the probability a fish is retained by the gear, conditional on gear contact—was slightly higher using the SmeltCam (mean = 0.58) than the conventional trawl (mean = 0.47, Probability SmeltCam retention efficiency > trawl retention efficiency = 94%). We also found turbidity did not affect the SmeltCam’s retention efficiency, although total fish density during an individual tow improved the trawl’s retention efficiency. Simulations also showed the binomial model was accurate when model assumptions were met. Collectively, our results suggest the SmeltCam to be a reliable alternative to sampling with conventional trawling gear, but future tests are needed to confirm whether the SmeltCam is as reliable when applied to taxa other than Northern Anchovy over a greater range of conditions.


1999 ◽  
Vol 38 (3) ◽  
pp. 170-181 ◽  
Author(s):  
Andrew J. Gunther ◽  
Jay A. Davis ◽  
Dane D. Hardin ◽  
Jordan Gold ◽  
David Bell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document