Study on the Chemical Modification Process of Jute Fiber

TAPPI Journal ◽  
2010 ◽  
Vol 9 (2) ◽  
pp. 23-29 ◽  
Author(s):  
Wei-ming Wang ◽  
Zai-sheng Cai ◽  
Jian-yong Yu

Degumming of pre-chlorite treated jute fiber was studied in this paper. The effects of sodium hydroxide concentration, treatment time, temperature, sodium silicate concentration, fiber-to-liquor ratio, penetrating agent TF-107B concentration, and degumming agent TF-125A concentration were the process conditions examined. With respect to gum decomposition, fineness and mechanical properties, sodium hydroxide concentration, sodium silicate concentration, and treatment time were found to be the most important parameters. An orthogonal L9(34) experiment designed to optimize the conditions for degumming resulted in the selection of the following procedure: sodium hydroxide of 12g/L, sodium silicate of 3g/L, TF-107B of 2g/L, TF-125A of 2g/L, treatment time of 105 min, temperature of 100°C and fiber to liquor ratio of 1:20. The effect of the above degumming process on the removal of impurities was also examined and the results showed that degumming was an effective method for removing impurities, especially hemicellulose.

2008 ◽  
Vol 3 (2) ◽  
pp. 155892500800300 ◽  
Author(s):  
Wei-ming Wang ◽  
Zai-sheng Cai ◽  
Jian-yong Yu

Degumming of pre-chlorite treated jute fiber was studied in this paper. The effects of sodium hydroxide concentration, treatment time, temperature, sodium silicate concentration, fiber-to-liquor ratio, penetrating agent TF-107B concentration and degumming agent TF-125A concentration were the process conditions examined. With respect to gum decomposition, fineness and mechanical properties, sodium hydroxide concentration, sodium silicate concentration and treatment time were found to be the most important parameters. An orthogonal L9(34) experiment designed to optimize the conditions for degumming resulted in the selection of the following procedure: sodium hydroxide of 12g/L, sodium silicate of 3g/L, TF-107B of 2g/L, TF-125A of 2g/L, treatment time of 105 min, temperature of 100°C and fiber to liquor ratio of 1:20. The effect of the above degumming process on the removal of impurities was also examined and the results showed that degumming was an effective method for removing impurities, especially hemicellulose.


2010 ◽  
Vol 156-157 ◽  
pp. 803-807
Author(s):  
Fu Sheng Niu ◽  
Shan Shan Zhou ◽  
Shu Xian Liu ◽  
Jin Xia Zhang

The tailings and slag based geopolymers was prepared by sodium silicate, sodium hydroxide alkali-activated tailings and slag. The compressive strength in 7 d under different raw material proportion were tested. The result indicated that tailings and slag based geopolymers has high compressive strength . As the tailings in slag is 80%, the compressive strength in 7d can reach 45.10 MPa . As the Na2SiO3 to NaOH ratio is 0.5, the compressive strength in 7d can reach 63.79 MPa. As the NaOH and sodium silicate concentration in the solution is 35%, the compressive strength in 7d can reach 38.35 MPa respectively; As the curing period is 14 d , the compressive strength can reach 71.25 MPa. As the steel scoria in solid is 20%, the compressive strength in 7d can reach 61.86 MPa respectively.


2021 ◽  
Author(s):  
Jie Liu ◽  
Wenqi Jiang ◽  
Ling Sun ◽  
Chun Lv

Abstract Alkali-oxygen one-bath scouring and bleaching process of the flax roving was studied by using a new type of synthesized non-silicon oxygen bleaching stabilizer Poly(acrylic acid) magnesium instead of sodium silicate. Based on the analysis of the effects of single factors such as sodium hydroxide concentration, hydrogen peroxide concentration, temperature, time and the amount of the synthesized non-silicon oxygen bleaching stabilizer poly(acrylic acid) magnesium salt on the performance of the bleached flax roving, including the whiteness, the breaking tenacity, the capillary effect and the weight loss ratio. The optimal process for the application of the stabilizer was determined by orthogonal test, namely, hydrogen peroxide concentration 8.5 g/L, sodium hydroxide concentration 5 g/L, sodium bisulfite 3 g/L, sodium carbonate 3 g/L, the synthesized non-silicon oxygen bleaching stabilizer poly(acrylic acid) magnesium 5.5 g/L, scoured and bleached at 90 ℃ for 60 min, and the bath ratio was 25:1. Compared with the traditional oxygen bleaching stabilizer sodium silicate, it not only has good ability to inhibit the rapid decomposition of hydrogen peroxide, but also has the advantages of higher whiteness, higher capillary effect, good feel and breaking tenacity, and can effectively solve the "silicon scale" problem and improve the quality of flax products.


2022 ◽  
Vol 955 (1) ◽  
pp. 012010
Author(s):  
A Kustirini ◽  
Antonius ◽  
P Setiyawan

Abstract Geopolymer concrete is concrete that uses environmentally friendly materials, using fly ash from waste materials from the coal industry as a substitute for cement. To produce geopolymer concrete, an alkaline activator is required, with a mixture of Sodium Hydroxide and Sodium Silicate. This research is an experimental study to determine the effect of variations in the concentration of sodium hydroxide (NaOH) 8 Mol, 10 Mol, 12 Mol, and 14 Mol on the compressive strength of geopolymer concrete. Mortar Geopolymer uses a mixture of 1: 3 for the ratio of fly ash and sand, 2.5: 0.45 for the ratio of sodium silicate and sodium hydroxide as an alkaline solution. The specimens used a cube mold having dimension 5 cm x 5 cm x 5 cm, then tested at 7 days and 28 days. The test resulted that concentration of NaOH 12 Mol obtained the maximum compressive strength of geopolymer concrete, that is 38.54 MPa. At concentrations of 12 Mol NaOH and exceeding 12M, the compressive strength of geopolymer concrete decreased.


2014 ◽  
Vol 14 (23) ◽  
pp. 3381-3384 ◽  
Author(s):  
R.H. Abdul Rahi ◽  
K.A. Azizli ◽  
Z. Man ◽  
T. Rahmiati ◽  
M.F. Nuruddin

Author(s):  
A. Z. Mohd Ali ◽  
◽  
N. A. Jalaluddin ◽  
N. Zulkiflee ◽  
◽  
...  

The production of ordinary Portland cement (OPC) consumes considerable amount of natural resources, energy and at the same time contribute in high emission of CO2 to the atmosphere. A new material replacing cement as binder called geopolymer is alkali-activated concrete which are made from fly ash, sodium silicate and sodium hydroxide (NaOH). The alkaline solution mixed with fly ash producing alternative binder to OPC binder in concrete named geopolymer paste. In the process, NaOH was fully dissolved in water and cooled to room temperature. This study aims to eliminate this process by using NaOH in solid form together with fly ash before sodium silicate liquid and water poured into the mixture. The amount of NaOH solids were based on 10M concentration. The workability test is in accordance to ASTM C230. Fifty cubic mm of the geopolymer paste were prepared which consists of fly ash to alkaline solution ratio of 1: 0.5 and the curing regime of 80℃ for 24 hours with 100% humidity were implemented. From laboratory test, the workability of dry method geopolymer paste were decreased. The compressive strength of the dry mix of NaOH showed 55% and the workability has dropped to 58.4%, it showed strength reduction compared to the wet mix method.


2012 ◽  
Vol 445 ◽  
pp. 637-642 ◽  
Author(s):  
Y. Gencer ◽  
M. Tarakci ◽  
S. Cengiz ◽  
K.O. Gunduz

In this study, zirconium oxide coatings were formed on pure zirconium by microarc oxidation technique with the electrolytes containing KOH and different amounts of sodium silicate (0-40 gr/lt) for the same coating duration of 2 hours. The microstructure, surface roughness, phase content and chemical composition of the coatings were characterized by using scanning electron microscopy, profilometery and X-ray diffractometry. It was found that the coatings on surface of zirconium consist of monoclinic ZrO2 (m-ZrO2) and tetragonal ZrO2 (t-ZrO2) phases and the addition and increasing sodium silicate concentration in the electrolyte increases amount of t-ZrO2 phase. The coatings were well adhered to Zr substrate with some cracks and porosities in the coating for all concentrations of sodium silicate. The coating thickness and surface roughness increased with sodium silicate concentration in the electrolyte. A glaze like Si rich structure and its increase with Si rate was evident in the outermost region of the coating.


Sign in / Sign up

Export Citation Format

Share Document