scholarly journals Application of Full Polarimetric ALOS PALSAR for Land Cover Mapping In Sleman District

PROMINE ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 33-40
Author(s):  
Like Indrawati

The simplest way to interpret polarimetric imagery for land cover classification is to use visualinterpretation methods. The existence of interpretations key as a tool for visual interpretation becomesimportant when different interpreters can produce different results. The quality of the results of theinterpretation of land cover is then determined by the quality of the interpretation tool, in this case, thekey to the interpretation of land cover. The purpose of this study was to make the key to land coverclass interpretation in the Full Polarimetric ALOS PALSAR image, then the interpretation key wasused for reference in making land cover maps and measuring the accuracy of the results of the visualinterpretation. The image used in this study consisted of HH, VV, HV and VH bands. The location ofthe study was in parts of Sleman District. The analysis is done visually by on-screen digitizing onALOS Palsar composite HH + VV HV + VH HH-HV image, which is then interpreted key. The truetest is done by means of the overall accuracy test and Kappa. Visually, ALOS PALSAR imagery isable to distinguish 12 land cover classes in the research area, namely built land, rice fields, mixedgardens, moorlands, salak garden, grass, forest, shrubs, open land, airports, water bodies and lavawith 83% Overall accuracy, and 78% Kappa accuracy.

2021 ◽  
Vol 13 (6) ◽  
pp. 1060
Author(s):  
Luc Baudoux ◽  
Jordi Inglada ◽  
Clément Mallet

CORINE Land-Cover (CLC) and its by-products are considered as a reference baseline for land-cover mapping over Europe and subsequent applications. CLC is currently tediously produced each six years from both the visual interpretation and the automatic analysis of a large amount of remote sensing images. Observing that various European countries regularly produce in parallel their own land-cover country-scaled maps with their own specifications, we propose to directly infer CORINE Land-Cover from an existing map, therefore steadily decreasing the updating time-frame. No additional remote sensing image is required. In this paper, we focus more specifically on translating a country-scale remote sensed map, OSO (France), into CORINE Land Cover, in a supervised way. OSO and CLC not only differ in nomenclature but also in spatial resolution. We jointly harmonize both dimensions using a contextual and asymmetrical Convolution Neural Network with positional encoding. We show for various use cases that our method achieves a superior performance than the traditional semantic-based translation approach, achieving an 81% accuracy over all of France, close to the targeted 85% accuracy of CLC.


2020 ◽  
Vol 12 (9) ◽  
pp. 1418
Author(s):  
Runmin Dong ◽  
Cong Li ◽  
Haohuan Fu ◽  
Jie Wang ◽  
Weijia Li ◽  
...  

Substantial progress has been made in the field of large-area land cover mapping as the spatial resolution of remotely sensed data increases. However, a significant amount of human power is still required to label images for training and testing purposes, especially in high-resolution (e.g., 3-m) land cover mapping. In this research, we propose a solution that can produce 3-m resolution land cover maps on a national scale without human efforts being involved. First, using the public 10-m resolution land cover maps as an imperfect training dataset, we propose a deep learning based approach that can effectively transfer the existing knowledge. Then, we improve the efficiency of our method through a network pruning process for national-scale land cover mapping. Our proposed method can take the state-of-the-art 10-m resolution land cover maps (with an accuracy of 81.24% for China) as the training data, enable a transferred learning process that can produce 3-m resolution land cover maps, and further improve the overall accuracy (OA) to 86.34% for China. We present detailed results obtained over three mega cities in China, to demonstrate the effectiveness of our proposed approach for 3-m resolution large-area land cover mapping.


2018 ◽  
Vol 10 (8) ◽  
pp. 1212 ◽  
Author(s):  
Xiaohong Yang ◽  
Zhong Xie ◽  
Feng Ling ◽  
Xiaodong Li ◽  
Yihang Zhang ◽  
...  

Super-resolution land cover mapping (SRM) is a method that aims to generate land cover maps with fine spatial resolutions from the original coarse spatial resolution remotely sensed image. The accuracy of the resultant land cover map produced by existing SRM methods is often limited by the errors of fraction images and the uncertainty of spatial pattern models. To address these limitations in this study, we proposed a fuzzy c-means clustering (FCM)-based spatio-temporal SRM (FCM_STSRM) model that combines the spectral, spatial, and temporal information into a single objective function. The spectral term is constructed with the FCM criterion, the spatial term is constructed with the maximal spatial dependence principle, and the temporal term is characterized by the land cover transition probabilities in the bitemporal land cover maps. The performance of the proposed FCM_STSRM method is assessed using data simulated from the National Land Cover Database dataset and real Landsat images. Results of the two experiments show that the proposed FCM_STSRM method can decrease the influence of fraction errors by directly using the original images as the input and the spatial pattern uncertainty by inheriting land cover information from the existing fine resolution land cover map. Compared with the hard classification and FCM_SRM method applied to mono-temporal images, the proposed FCM_STSRM method produced fine resolution land cover maps with high accuracy, thus showing the efficiency and potential of the novel approach for producing fine spatial resolution maps from coarse resolution remotely sensed images.


2021 ◽  
Vol 912 (1) ◽  
pp. 012093
Author(s):  
M M Harahap ◽  
Rahmawaty ◽  
H Kurniawan ◽  
A Rauf ◽  
M Ulfa

Abstract Deli Serdang is one of the regencies in North Sumatra Province, experiencing relatively rapid development and population. Increasing in demand for the availability of land as living space. Two sub-districts of upstream watershed experienced changes in land cover, namely; Sinembah Tanjung Muda (STM) Hilir and STM Hulu. Monitoring changes in land cover in both sub-districts is essential, given that they are located in the upstream area of the watershed and will impact other areas in the lower watershed. This study aims to analyse land cover changes in both sub-districts over ten years (2009 - 2019). The method used in calculating land changes that occur is change detection. Field surveys were carried out to ensure that the land cover conditions on the land cover maps followed the field’s actual conditions. The research shows the period of 2009 – 2019, land cover that has increased in the area are mining, industry, open land, settlements, livestock and shrubs. The decrease in the area occurred in land cover, including dryland forest, mixed gardens and cultivated land.


2021 ◽  
Author(s):  
Hui Yang ◽  
Songnian Li ◽  
Jun Chen ◽  
Xiaolu Zhang ◽  
Shishuo Xu

A number of national, regional and global land cover classification systems have been developed to meet specific user requirements for land cover mapping exercises, independent of scale, nomenclature and quality. However, this variety of land-cover classification systems limits the compatibility and comparability of land cover data. Furthermore, the current lack of interoperability between different land cover datasets, often stemming from incompatible land cover classification systems, makes analysis of multi-source, heterogeneous land cover data for various applications a very difficult task. This paper provides a critical review of the harmonization of land cover classification systems, which facilitates the generation, use and analysis of land cover maps consistently. Harmonization of existing land cover classification systems is essential to improve their cross-comparison and validation for understanding landscape patterns and changes. The paper reviews major land cover classification standards according to different scales, summarizes studies on harmonizing land cover mapping, and discusses some research problems that need to be solved and some future research directions. Keywords: land cover; classification system; standard; harmonization


2020 ◽  
Vol 12 (3) ◽  
pp. 503
Author(s):  
Li ◽  
Chen ◽  
Foody ◽  
Wang ◽  
Yang ◽  
...  

The generation of land cover maps with both fine spatial and temporal resolution would aid the monitoring of change on the Earth’s surface. Spatio-temporal sub-pixel land cover mapping (STSPM) uses a few fine spatial resolution (FR) maps and a time series of coarse spatial resolution (CR) remote sensing images as input to generate FR land cover maps with a temporal frequency of the CR data set. Traditional STSPM selects spatially adjacent FR pixels within a local window as neighborhoods to model the land cover spatial dependence, which can be a source of error and uncertainty in the maps generated by the analysis. This paper proposes a new STSPM using FR remote sensing images that pre- and/or post-date the CR image as ancillary data to enhance the quality of the FR map outputs. Spectrally similar pixels within the locality of a target FR pixel in the ancillary data are likely to represent the same land cover class and hence such same-class pixels can provide spatial information to aid the analysis. Experimental results showed that the proposed STSPM predicted land cover maps more accurately than two comparative state-of-the-art STSPM algorithms.


Sign in / Sign up

Export Citation Format

Share Document