scholarly journals Spatio-Temporal Sub-Pixel Land Cover Mapping of Remote Sensing Imagery Using Spatial Distribution Information From Same-Class Pixels

2020 ◽  
Vol 12 (3) ◽  
pp. 503
Author(s):  
Li ◽  
Chen ◽  
Foody ◽  
Wang ◽  
Yang ◽  
...  

The generation of land cover maps with both fine spatial and temporal resolution would aid the monitoring of change on the Earth’s surface. Spatio-temporal sub-pixel land cover mapping (STSPM) uses a few fine spatial resolution (FR) maps and a time series of coarse spatial resolution (CR) remote sensing images as input to generate FR land cover maps with a temporal frequency of the CR data set. Traditional STSPM selects spatially adjacent FR pixels within a local window as neighborhoods to model the land cover spatial dependence, which can be a source of error and uncertainty in the maps generated by the analysis. This paper proposes a new STSPM using FR remote sensing images that pre- and/or post-date the CR image as ancillary data to enhance the quality of the FR map outputs. Spectrally similar pixels within the locality of a target FR pixel in the ancillary data are likely to represent the same land cover class and hence such same-class pixels can provide spatial information to aid the analysis. Experimental results showed that the proposed STSPM predicted land cover maps more accurately than two comparative state-of-the-art STSPM algorithms.


2018 ◽  
Vol 10 (8) ◽  
pp. 1212 ◽  
Author(s):  
Xiaohong Yang ◽  
Zhong Xie ◽  
Feng Ling ◽  
Xiaodong Li ◽  
Yihang Zhang ◽  
...  

Super-resolution land cover mapping (SRM) is a method that aims to generate land cover maps with fine spatial resolutions from the original coarse spatial resolution remotely sensed image. The accuracy of the resultant land cover map produced by existing SRM methods is often limited by the errors of fraction images and the uncertainty of spatial pattern models. To address these limitations in this study, we proposed a fuzzy c-means clustering (FCM)-based spatio-temporal SRM (FCM_STSRM) model that combines the spectral, spatial, and temporal information into a single objective function. The spectral term is constructed with the FCM criterion, the spatial term is constructed with the maximal spatial dependence principle, and the temporal term is characterized by the land cover transition probabilities in the bitemporal land cover maps. The performance of the proposed FCM_STSRM method is assessed using data simulated from the National Land Cover Database dataset and real Landsat images. Results of the two experiments show that the proposed FCM_STSRM method can decrease the influence of fraction errors by directly using the original images as the input and the spatial pattern uncertainty by inheriting land cover information from the existing fine resolution land cover map. Compared with the hard classification and FCM_SRM method applied to mono-temporal images, the proposed FCM_STSRM method produced fine resolution land cover maps with high accuracy, thus showing the efficiency and potential of the novel approach for producing fine spatial resolution maps from coarse resolution remotely sensed images.



2021 ◽  
Vol 13 (6) ◽  
pp. 1060
Author(s):  
Luc Baudoux ◽  
Jordi Inglada ◽  
Clément Mallet

CORINE Land-Cover (CLC) and its by-products are considered as a reference baseline for land-cover mapping over Europe and subsequent applications. CLC is currently tediously produced each six years from both the visual interpretation and the automatic analysis of a large amount of remote sensing images. Observing that various European countries regularly produce in parallel their own land-cover country-scaled maps with their own specifications, we propose to directly infer CORINE Land-Cover from an existing map, therefore steadily decreasing the updating time-frame. No additional remote sensing image is required. In this paper, we focus more specifically on translating a country-scale remote sensed map, OSO (France), into CORINE Land Cover, in a supervised way. OSO and CLC not only differ in nomenclature but also in spatial resolution. We jointly harmonize both dimensions using a contextual and asymmetrical Convolution Neural Network with positional encoding. We show for various use cases that our method achieves a superior performance than the traditional semantic-based translation approach, achieving an 81% accuracy over all of France, close to the targeted 85% accuracy of CLC.



2021 ◽  
Vol 13 (19) ◽  
pp. 3956
Author(s):  
Shan He ◽  
Huaiyong Shao ◽  
Wei Xian ◽  
Shuhui Zhang ◽  
Jialong Zhong ◽  
...  

Hilly areas are important parts of the world’s landscape. A marginal phenomenon can be observed in some hilly areas, leading to serious land abandonment. Extracting the spatio-temporal distribution of abandoned land in such hilly areas can protect food security, improve people’s livelihoods, and serve as a tool for a rational land plan. However, mapping the distribution of abandoned land using a single type of remote sensing image is still challenging and problematic due to the fragmentation of such hilly areas and severe cloud pollution. In this study, a new approach by integrating Linear stretch (Ls), Maximum Value Composite (MVC), and Flexible Spatiotemporal DAta Fusion (FSDAF) was proposed to analyze the time-series changes and extract the spatial distribution of abandoned land. MOD09GA, MOD13Q1, and Sentinel-2 were selected as the basis of remote sensing images to fuse a monthly 10 m spatio-temporal data set. Three pieces of vegetation indices (VIs: ndvi, savi, ndwi) were utilized as the measures to identify the abandoned land. A multiple spatio-temporal scales sample database was established, and the Support Vector Machine (SVM) was used to extract abandoned land from cultivated land and woodland. The best extraction result with an overall accuracy of 88.1% was achieved by integrating Ls, MVC, and FSDAF, with the assistance of an SVM classifier. The fused VIs image set transcended the single source method (Sentinel-2) with greater accuracy by a margin of 10.8–23.6% for abandoned land extraction. On the other hand, VIs appeared to contribute positively to extract abandoned land from cultivated land and woodland. This study not only provides technical guidance for the quick acquirement of abandoned land distribution in hilly areas, but it also provides strong data support for the connection of targeted poverty alleviation to rural revitalization.



2020 ◽  
Vol 12 (8) ◽  
pp. 1263 ◽  
Author(s):  
Yingfei Xiong ◽  
Shanxin Guo ◽  
Jinsong Chen ◽  
Xinping Deng ◽  
Luyi Sun ◽  
...  

Detailed and accurate information on the spatial variation of land cover and land use is a critical component of local ecology and environmental research. For these tasks, high spatial resolution images are required. Considering the trade-off between high spatial and high temporal resolution in remote sensing images, many learning-based models (e.g., Convolutional neural network, sparse coding, Bayesian network) have been established to improve the spatial resolution of coarse images in both the computer vision and remote sensing fields. However, data for training and testing in these learning-based methods are usually limited to a certain location and specific sensor, resulting in the limited ability to generalize the model across locations and sensors. Recently, generative adversarial nets (GANs), a new learning model from the deep learning field, show many advantages for capturing high-dimensional nonlinear features over large samples. In this study, we test whether the GAN method can improve the generalization ability across locations and sensors with some modification to accomplish the idea “training once, apply to everywhere and different sensors” for remote sensing images. This work is based on super-resolution generative adversarial nets (SRGANs), where we modify the loss function and the structure of the network of SRGANs and propose the improved SRGAN (ISRGAN), which makes model training more stable and enhances the generalization ability across locations and sensors. In the experiment, the training and testing data were collected from two sensors (Landsat 8 OLI and Chinese GF 1) from different locations (Guangdong and Xinjiang in China). For the cross-location test, the model was trained in Guangdong with the Chinese GF 1 (8 m) data to be tested with the GF 1 data in Xinjiang. For the cross-sensor test, the same model training in Guangdong with GF 1 was tested in Landsat 8 OLI images in Xinjiang. The proposed method was compared with the neighbor-embedding (NE) method, the sparse representation method (SCSR), and the SRGAN. The peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) were chosen for the quantitive assessment. The results showed that the ISRGAN is superior to the NE (PSNR: 30.999, SSIM: 0.944) and SCSR (PSNR: 29.423, SSIM: 0.876) methods, and the SRGAN (PSNR: 31.378, SSIM: 0.952), with the PSNR = 35.816 and SSIM = 0.988 in the cross-location test. A similar result was seen in the cross-sensor test. The ISRGAN had the best result (PSNR: 38.092, SSIM: 0.988) compared to the NE (PSNR: 35.000, SSIM: 0.982) and SCSR (PSNR: 33.639, SSIM: 0.965) methods, and the SRGAN (PSNR: 32.820, SSIM: 0.949). Meanwhile, we also tested the accuracy improvement for land cover classification before and after super-resolution by the ISRGAN. The results show that the accuracy of land cover classification after super-resolution was significantly improved, in particular, the impervious surface class (the road and buildings with high-resolution texture) improved by 15%.



2020 ◽  
Vol 12 (1) ◽  
pp. 174
Author(s):  
Tianjun Wu ◽  
Jiancheng Luo ◽  
Ya’nan Zhou ◽  
Changpeng Wang ◽  
Jiangbo Xi ◽  
...  

Land cover (LC) information plays an important role in different geoscience applications such as land resources and ecological environment monitoring. Enhancing the automation degree of LC classification and updating at a fine scale by remote sensing has become a key problem, as the capability of remote sensing data acquisition is constantly being improved in terms of spatial and temporal resolution. However, the present methods of generating LC information are relatively inefficient, in terms of manually selecting training samples among multitemporal observations, which is becoming the bottleneck of application-oriented LC mapping. Thus, the objectives of this study are to speed up the efficiency of LC information acquisition and update. This study proposes a rapid LC map updating approach at a geo-object scale for high-spatial-resolution (HSR) remote sensing. The challenge is to develop methodologies for quickly sampling. Hence, the core step of our proposed methodology is an automatic method of collecting samples from historical LC maps through combining change detection and label transfer. A data set with Chinese Gaofen-2 (GF-2) HSR satellite images is utilized to evaluate the effectiveness of our method for multitemporal updating of LC maps. Prior labels in a historical LC map are certified to be effective in a LC updating task, which contributes to improve the effectiveness of the LC map update by automatically generating a number of training samples for supervised classification. The experimental outcomes demonstrate that the proposed method enhances the automation degree of LC map updating and allows for geo-object-based up-to-date LC mapping with high accuracy. The results indicate that the proposed method boosts the ability of automatic update of LC map, and greatly reduces the complexity of visual sample acquisition. Furthermore, the accuracy of LC type and the fineness of polygon boundaries in the updated LC maps effectively reflect the characteristics of geo-object changes on the ground surface, which makes the proposed method suitable for many applications requiring refined LC maps.



2020 ◽  
Vol 12 (4) ◽  
pp. 688 ◽  
Author(s):  
Jacky Lee ◽  
Jeffrey A. Cardille ◽  
Michael T. Coe

Landsat 5 has produced imagery for decades that can now be viewed and manipulated in Google Earth Engine, but a general, automated way of producing a coherent time series from these images—particularly over cloudy areas in the distant past—is elusive. Here, we create a land use and land cover (LULC) time series for part of tropical Mato Grosso, Brazil, using the Bayesian Updating of Land Cover: Unsupervised (BULC-U) technique. The algorithm built backward in time from the GlobCover 2009 data set, a multi-category global LULC data set at 300 m resolution for the year 2009, combining it with Landsat time series imagery to create a land cover time series for the period 1986–2000. Despite the substantial LULC differences between the 1990s and 2009 in this area, much of the landscape remained the same: we asked whether we could harness those similarities and differences to recreate an accurate version of the earlier LULC. The GlobCover basis and the Landsat-5 images shared neither a common spatial resolution nor time frame, But BULC-U successfully combined the labels from the coarser classification with the spatial detail of Landsat. The result was an accurate fine-scale time series that quantified the expansion of deforestation in the study area, which more than doubled in size during this time. Earth Engine directly enabled the fusion of these different data sets held in its catalog: its flexible treatment of spatial resolution, rapid prototyping, and overall processing speed permitted the development and testing of this study. Many would-be users of remote sensing data are currently limited by the need to have highly specialized knowledge to create classifications of older data. The approach shown here presents fewer obstacles to participation and allows a wide audience to create their own time series of past decades. By leveraging both the varied data catalog and the processing speed of Earth Engine, this research can contribute to the rapid advances underway in multi-temporal image classification techniques. Given Earth Engine’s power and deep catalog, this research further opens up remote sensing to a rapidly growing community of researchers and managers who need to understand the long-term dynamics of terrestrial systems.



2020 ◽  
Author(s):  
Laura Bindereif ◽  
Tobias Rentschler ◽  
Martin Batelheim ◽  
Marta Díaz-Zorita Bonilla ◽  
Philipp Gries ◽  
...  

<p>Land cover information plays an essential role for resource development, environmental monitoring and protection. Amongst other natural resources, soils and soil properties are strongly affected by land cover and land cover change, which can lead to soil degradation. Remote sensing techniques are very suitable for spatio-temporal mapping of land cover mapping and change detection. With remote sensing programs vast data archives were established. Machine learning applications provide appropriate algorithms to analyse such amounts of data efficiently and with accurate results. However, machine learning methods require specific sampling techniques and are usually made for balanced datasets with an even training sample frequency. Though, most real-world datasets are imbalanced and methods to reduce the imbalance of datasets with synthetic sampling are required. Synthetic sampling methods increase the number of samples in the minority class and/or decrease the number in the majority class to achieve higher model accuracy. The Synthetic Minority Over-Sampling Technique (SMOTE) is a method to generate synthetic samples and balance the dataset used in many machine learning applications. In the middle Guadalquivir basin, Andalusia, Spain, we used random forests with Landsat images from 1984 to 2018 as covariates to map the land cover change with the Google Earth Engine. The sampling design was based on stratified random sampling according to the CORINE land cover classification of 2012. The land cover classes in our study were arable land, permanent crops (plantations), pastures/grassland, forest and shrub. Artificial surfaces and water bodies were excluded from modelling. However, the number of the 130 training samples was imbalanced. The classes pasture (7 samples) and shrub (13 samples) show a lower number than the other classes (48, 47 and 16 samples). This led to misclassifications and negatively affected the classification accuracy. Therefore, we applied SMOTE to increase the number of samples and the classification accuracy of the model. Preliminary results are promising and show an increase of the classification accuracy, especially the accuracy of the previously underrepresented classes pasture and shrub. This corresponds to the results of studies with other objectives which also see the use of synthetic sampling methods as an improvement for the performance of classification frameworks.</p>





Sign in / Sign up

Export Citation Format

Share Document