scholarly journals Using Iterative Reweighting Algorithm and Genetic Algorithm to Calculate The Estimation of The Parameters Of The Maximum Likelihood of The Skew Normal Distribution

2021 ◽  
Vol 27 (127) ◽  
pp. 253-264
Author(s):  
مرتضى علاء الخفاجي ◽  
رباب عبد الرضا البكري

Excessive skewness which occurs sometimes in the data is represented as an obstacle against normal distribution. So, recent studies have witnessed activity in studying the skew-normal distribution (SND) that matches the skewness data which is regarded as a special case of the normal distribution with additional skewness parameter (α), which gives more flexibility to the normal distribution. When estimating the parameters of (SND), we face the problem of the non-linear equation and by using the method of Maximum Likelihood estimation (ML) their solutions will be inaccurate and unreliable. To solve this problem, two methods can be used that are: the genetic algorithm (GA) and the iterative reweighting algorithm (IR) based on the Maximum Likelihood method. Monte Carlo simulation was used with different skewness levels and sample sizes, and the superiority of the results was compared. It was concluded that (SND) model estimation using (GA) is the best when the samples sizes are small and medium, while large samples indicate that the (IR) algorithm is the best. The study was also done using real data to find the parameter estimation and a comparison between the superiority of the results based on (AIC, BIC, Mse and Def) criteria.

Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 703
Author(s):  
David Elal-Olivero ◽  
Juan F. Olivares-Pacheco ◽  
Osvaldo Venegas ◽  
Heleno Bolfarine ◽  
Héctor W. Gómez

The main object of this paper is to develop an alternative construction for the bimodal skew-normal distribution. The construction is based upon a study of the mixture of skew-normal distributions. We study some basic properties of this family, its stochastic representations and expressions for its moments. Parameters are estimated using the maximum likelihood estimation method. A simulation study is carried out to observe the performance of the maximum likelihood estimators. Finally, we compare the efficiency of the new distribution with other distributions in the literature using a real data set. The study shows that the proposed approach presents satisfactory results.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1439
Author(s):  
Guillermo Martínez-Flórez ◽  
Víctor Leiva ◽  
Emilio Gómez-Déniz ◽  
Carolina Marchant

In this paper, we consider skew-normal distributions for constructing new a distribution which allows us to model proportions and rates with zero/one inflation as an alternative to the inflated beta distributions. The new distribution is a mixture between a Bernoulli distribution for explaining the zero/one excess and a censored skew-normal distribution for the continuous variable. The maximum likelihood method is used for parameter estimation. Observed and expected Fisher information matrices are derived to conduct likelihood-based inference in this new type skew-normal distribution. Given the flexibility of the new distributions, we are able to show, in real data scenarios, the good performance of our proposal.


Author(s):  
Muhammad Mansoor ◽  
M. H. Tahir ◽  
Aymaan Alzaatreh ◽  
Gauss M. Cordeiro

A new three-parameter compounded extended-exponential distribution “Poisson Nadarajah–Haghighi” is introduced and studied, which is quite flexible and can be used effectively in modeling survival data. It can have increasing, decreasing, upside-down bathtub and bathtub-shaped failure rate. A comprehensive account of the mathematical properties of the model is presented. We discuss maximum likelihood estimation for complete and censored data. The suitability of the maximum likelihood method to estimate its parameters is assessed by a Monte Carlo simulation study. Four empirical illustrations of the new model are presented to real data and the results are quite satisfactory.


Author(s):  
Ehab Mohamed Almetwally ◽  
Hisham Mohamed Almongy ◽  
Amaal El sayed Mubarak

In this paper we consider the estimation of the Weibull Generalized Exponential Distribution (WGED) Parameters with Progressive Censoring Schemes. In order to obtain the optimal censoring scheme for WGED, more than one method of estimation was used to reach a better scheme with the best method of estimation. The maximum likelihood method and the method of Bayesian estimation for (square error and Linex) loss function have been used. Monte carlo simulation is used for comparison between the two methods of estimation under censoring schemes. To show how the schemes work in practice; we analyze a strength data for single carbon fibers as a case of real data.


Symmetry ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1509
Author(s):  
Guillermo Martínez-Flórez ◽  
Artur J. Lemonte ◽  
Hugo S. Salinas

The univariate power-normal distribution is quite useful for modeling many types of real data. On the other hand, multivariate extensions of this univariate distribution are not common in the statistic literature, mainly skewed multivariate extensions that can be bimodal, for example. In this paper, based on the univariate power-normal distribution, we extend the univariate power-normal distribution to the multivariate setup. Structural properties of the new multivariate distributions are established. We consider the maximum likelihood method to estimate the unknown parameters, and the observed and expected Fisher information matrices are also derived. Monte Carlo simulation results indicate that the maximum likelihood approach is quite effective to estimate the model parameters. An empirical application of the proposed multivariate distribution to real data is provided for illustrative purposes.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1894
Author(s):  
Pilar A. Rivera ◽  
Diego I. Gallardo ◽  
Osvaldo Venegas ◽  
Marcelo Bourguignon ◽  
Héctor W. Gómez

In the paper, we present an extension of the truncated-exponential skew-normal (TESN) distribution. This distribution is defined as the quotient of two independent random variables whose distributions are the TESN distribution and the beta distribution with shape parameters q and 1, respectively. The resulting distribution has a more flexible coefficient of kurtosis. We studied the general probability density function (pdf) of this distribution, its survival and hazard functions, some of its properties, moments and inference by the maximum likelihood method. We carried out a simulation and applied the methodology to a real dataset.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1462
Author(s):  
Mansour Shrahili ◽  
Naif Alotaibi

A new family of probability distributions is defined and applied for modeling symmetric real-life datasets. Some new bivariate type G families using Farlie–Gumbel–Morgenstern copula, modified Farlie–Gumbel–Morgenstern copula, Clayton copula and Renyi’s entropy copula are derived. Moreover, some of its statistical properties are presented and studied. Next, the maximum likelihood estimation method is used. A graphical assessment based on biases and mean squared errors is introduced. Based on this assessment, the maximum likelihood method performs well and can be used for estimating the model parameters. Finally, two symmetric real-life applications to illustrate the importance and flexibility of the new family are proposed. The symmetricity of the real data is proved nonparametrically using the kernel density estimation method.


Sign in / Sign up

Export Citation Format

Share Document