scholarly journals Calculation of Critical Load for Pure Distortional Buckling of Lipped Channel Columns

Author(s):  
Imene Mahi ◽  
Mohamed Djelil ◽  
Naoual Djafour ◽  
Mustapha Djafour

This paper presents a method that allows calculating the elastic critical stress for the distortional buckling mode, based on the buckling mode classification of typical lipped channel columns. In our case, Cold-Formed Steel Lipped Channel Columns are subjected to compression. Moreover, in order to consolidate the important findings of this work, a comparative study was carried out to assess the reliability of various distortional buckling models that are provided by different design Standards. It was found that the American and Australian approaches, given in the codes of practice, are closer to the Finite Strip Method than to the European method. An analytical solution was proposed for the determination of the distortional buckling stress on the basis of a statistical method; it corresponds to lipped channel sections with a flange width to web width ratio b/h ranging from 0.1 to 1, and a lip width to web width ratio c/h between 0 and 0.5. After comparison with the results given by the finite strip method for pure distortional buckling, it turned out that the proposed approach provides a reasonable prediction for the elastic distortional buckling stress for lipped channel sections subjected to compression. In fact, this method gives better results than the American approach.

Author(s):  
Zoltán Beregszászi ◽  
Sándor Ádány

In this paper modal decomposition of the deformations of thin-walled structural members are discussed. Modal decomposition is a process which separates the characteristic behavior modes. If applied in buckling analysis, modal decomposition makes it possible to analyze pure global or pure distortional buckling or pure local-plate buckling. Ability to calculate critical loads to a pure buckling mode is highly useful in the design of thin-walled structural members, such as cold-formed steel beams or columns. Cold-formed steel profiles are always produced with rounded corners, and earlier studies showed that the now-used modal decomposition techniques of the constrained finite element method and generalized beam theory fail to lead to reasonable results if the rounded corners are directly modelled in the analysis. An extension to the constrained finite strip method is proposed and discussed. The proposal introduces rigid corner elements, which make it possible to perform the modal decomposition by the same process used for members with sharp corners, even if the rounded corners are directly modelled. The formulation of the proposal is summarized, then the rigid-corner approach is studied by an extended parametric study.


2010 ◽  
Vol 163-167 ◽  
pp. 1385-1390
Author(s):  
Wei Xu ◽  
Liang Huang ◽  
Bo Wang

A mathematical model using the beam-shell compound finite strip method is established to study the elastic stability analysis of multi-trough rectangle aqueducts. The impacts of the transverse stiffeners and crossbars for the model are taken into account. The principle of minimum potential energy is used to deduce the eigenvalue equation for elastic stability problems. To verify the accuracy and efficiency of the beam-shell compound finite strip method, the numerical solution of the stability analysis for an actual aqueduct is calculated through the established model and other FEM methods. The result of the stability analysis for an actual aqueduct shows that: the buckling coefficient is reduced as the water level increasing while buckling mode remaining constant; and prestressed load has a great impact on not only the buckling coefficient but also buckling mode.


Sign in / Sign up

Export Citation Format

Share Document