scholarly journals The Investigation of the Mixed Convection from a Confined Rotating Circular Cylinder

2017 ◽  
Vol 61 (3) ◽  
pp. 161 ◽  
Author(s):  
Kamel Yahiaoui ◽  
Driss Nehari ◽  
Belkacem Draoui

In this paper, a numerical study on the two-dimensional laminar mixed convective flow and heat transfer from an rotating circular horizontal and isothermal cylinder confined in a horizontal channel. The blockage ratio and the Prandtl number are fixed at 0.05 and 0.7 respectively. The continuity, momentum and energy equations are solved via the finite-volume method. Our results are in very good agreement with those resulting from preceding studies to Ri=0 and a=0, which makes it possible to validate on important extension of present work. The mixed convective flow and heat transfer is simulated by the Reynolds number is studied in the range 1 <Re <40, the Richardson number (Ri) demonstrating the influence of thermal buoyancy ranges from 0 to 1 and for rotational rate from α=0 to α=4. Major emphasis is given to the effect of rotating a circular cylinder on the mixed convection and also on the measurements of the local and average Nusselt numbers are also obtained. Furthermore, the representative streamlines and isotherm patterns are presented and discussed.

2019 ◽  
Vol 23 (3 Part B) ◽  
pp. 1861-1873
Author(s):  
Thangavelu Mahalakshmi ◽  
Nagarajan Nithyadevi ◽  
Hakan Oztop

This present numerical study explores the MHD mixed convective flow and heat transfer analysis in a square porous enclosure filled with nanofluid having center thin heater. The left and right walls of the enclosure are maintained at temperature T . The bottom wall is c considered with a constant heat source whereas the remaining part of bottom wall and top wall are kept adiabatic. The finite volume method based on SIMPLE algorithm is used to solve the governing equations in order to investigate the effect of heater length, Hartmann, Richardson, and Darcy numbers on the fluid-flow and heat transfer characteristics inside the enclosure. A set of graphical results are presented in terms of streamlines, isotherms, mid height velocity profiles and average Nusselt numbers. The results reveal that heat transfer rate increases as heater length increases for increasing Darcy and Richardson numbers. Among the two positions of heaters, larger enhancement of heat transfer is obtained for horizontal heater of maximum length. It is observed that, Hartmann number is a good control parameter for heat transfer in fluid-flow through porous medium in enclosure. Moreover, Ag-water nanofluid has greater merit to be used for heat transfer enhancement. This problem may be occurred in designing cooling system for electronic equipment to maximize the efficiency with active and secured operational conditions.


10.30544/450 ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 71-86
Author(s):  
Kamel Korib ◽  
Mohamed ROUDANE ◽  
Yacine Khelili

In this paper, a numerical simulation has been performed to study the fluid flow and heat transfer around a rotating circular cylinder over low Reynolds numbers. Here, the Reynolds number is 200, and the values of rotation rates (α) are varied within the range of 0 < α < 6. Two-dimensional and unsteady mass continuity, momentum, and energy equations have been discretized using the finite volume method. SIMPLE algorithm has been applied for solving the pressure linked equations. The effect of rotation rates (α) on fluid flow and heat transfer were investigated numerically. Also, time-averaged (lift and drag coefficients and Nusselt number) results were obtained and compared with the literature data. A good agreement was obtained for both the local and averaged values.


2018 ◽  
Vol 389 ◽  
pp. 164-175
Author(s):  
Houssem Laidoudi ◽  
Bilal Blissag ◽  
Mohamed Bouzit

In this paper, the numerical simulations of laminar mixed convection heat transfer from row of three isothermal square cylinders placed in side-by-side arrangement are carried out to understand the behavior of fluid flow around those cylinders under gradual effect of thermal buoyancy and its effect on the evacuation of heat energy. The numerical results are presented and discussed for the range of these conditions: Re = 10 to 40, Ri = 0 to 2 at fixed value of Prandtl number of Pr = 1 and at fixed geometrical configuration. In order to analyze the effect of thermal buoyancy on fluid flow and heat transfer characteristics the main results are illustrated in terms of streamline and isotherm contours. The total drag coefficient as well as average Nusselt number of each cylinder are also computed to determine exactly the effect of buoyancy strength on hydrodynamic force and heat transfer evacuation of each cylinder.


2019 ◽  
Vol 9 (23) ◽  
pp. 5241 ◽  
Author(s):  
Ahmed M. Rashad ◽  
Waqar A. Khan ◽  
Saber M. M. EL-Kabeir ◽  
Amal M. A. EL-Hakiem

The micropolar nanofluids are the potential liquids that enhance the thermophysical features and ability of heat transportation instead of base liquids. Alumina and Titania nanoparticles are mixed in a micropolar fluid. The impact of convective boundary condition is also examined with assisting and opposing flows of both nanofluids. The main objective of this study is to investigate mixed convective flow and heat transfer of micropolar nanofluids across a cylinder in a saturated porous medium. Non-similar variables are used to make the governing equations dimensionless. The local similar and non-similar solutions are obtained by using the Runge-Kutta-Fehlberg method of seventh order. The impacts of various embedded variables on the flow and heat transfer of micropolar nanofluids are investigated and interpreted graphically. It is demonstrated that the skin friction and heat transfer rates depend on solid volume fraction of nanoparticles, Biot number, mixed convection, and material parameters.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Orkodip Mookherjee ◽  
Shantanu Pramanik

Abstract A numerical study of magneto-hydrodynamic mixed convection in a cavity has been conducted to investigate the influence of magnetic field on integrated flux of thermal energy, linear momentum, and kinetic energy. Shear force through lid motion establishes the forced convection effect and buoyancy force due to differential heating of the moving lid and the stationary interface ensures the natural convection phenomenon. Additionally, conduction through the solid slab with prescribed temperature at the outer surface attached to the cavity induces conjugate heat transfer. Further, the top and bottom walls throughout the domain are kept insulated and a uniform horizontal magnetic field is applied on the interface toward left. Fluid flow and heat transfer characteristics are examined for a range of Hartmann number (Ha): 0, 10, 50, and 120 at fixed values of Reynolds number, Grashof number, and Prandtl number of 300, 9 × 104 and 0.71, respectively. The result shows that the transport of heat in the near wall regions of the fluid domain is primarily governed by diffusion, whereas advection appears stronger in the central region of the cavity. Increase in magnetic field strength from Ha = 0 to 120 gradually suppresses the recirculating structure of the flow signifying a reduction in advective strength as depicted by the decrease in the value of total integrated heat flux from 25.15×10-3 to 6.0×10-3. The reduction in heat flux, momentum fluxes, and kinetic energy fluxes with increase in magnetic field has been well correlated in the range of 0≤Ha≤120.


Sign in / Sign up

Export Citation Format

Share Document