scholarly journals Reservoir modeling and petrophysical evaluation of kanga field onshore Niger delta.

2021 ◽  
Vol 4 (2) ◽  

Reservoir sands from seven wells in Kanga Field in the Onshore Niger Delta was subjected to both petrophysical evaluation and reservoir modeling. Methodologies used are standard methods used in reservoir modeling and petrophysical evaluation. Results from reservoir modeling, shows that six synthetics and four antithetic faults have been identified and these faults are the main structural closure for hydrocarbon accumulation in Kanga Field. Petrophysical analysis showed porosity ranging from (25-27%), (16-27%) and (11-17%) for J100, K100 and L100 respectively. Modeled porosity showed high porosity in J100 and the central part of K100 reservoir. While, low porosity/; is recorded in L100. Water saturation ranges from 20 to 90% in the J100 reservoir, the lowest water saturation value was at the NE, NW and central part of the reservoir. Oil water contact reveals pockets of hydrocarbon in J100 and L100 reservoir. The bulk volume of hydrocarbon saturation closure is (21,954.37) arceft, (209,613.7) acreft and 46,025.51) acreft for J100, K100, and L100 reservoirs respectively. The estimated volumetric for P90 are (4,648,755.06) STB, (16,545,452.38) STB and (9,976,551.38) STB respectively. This study de that the field is viable for hydrocarbon exploration.

2021 ◽  
Author(s):  
Nasser Faisal Al-Khalifa ◽  
Mohammed Farouk Hassan ◽  
Deepak Joshi ◽  
Asheshwar Tiwary ◽  
Ihsan Taufik Pasaribu ◽  
...  

Abstract The Umm Gudair (UG) Field is a carbonate reservoir of West Kuwait with more than 57 years of production history. The average water cut of the field reached closed to 60 percent due to a long history of production and regulating drawdown in a different part of the field, consequentially undulating the current oil/water contact (COWC). As a result, there is high uncertainty of the current oil/water contact (COWC) that impacts the drilling strategy in the field. The typical approach used to develop the field in the lower part of carbonate is to drill deviated wells to original oil/water contact (OOWC) to know the saturation profile and later cement back up to above the high-water saturation zone and then perforate with standoff. This method has not shown encouraging results, and a high water cut presence remains. An innovative solution is required with a technology that can give a proactive approach while drilling to indicate approaching current oil/water contact and geo-stop drilling to give optimal standoff between the bit and the detected water contact (COWC). Recent development of electromagnetic (EM) look-ahead resistivity technology was considered and first implemented in the Umm Gudair (UG) Field. It is an electromagnetic-based signal that can detect the resistivity features ahead of the bit while drilling and enables proactive decisions to reduce drilling and geological or reservoir risks related to the well placement challenges.


2017 ◽  
Vol 5 (1) ◽  
pp. 19
Author(s):  
Ubong Essien ◽  
Akaninyene Akankpo ◽  
Okechukwu Agbasi

Petrophysical analysis was performed in two wells in the Niger Delta Region, Nigeria. This study is aimed at making available petrophysical data, basically water saturation calculation using cementation values of 2.0 for the reservoir formations of two wells in the Niger delta basin. A suite of geophysical open hole logs namely Gamma ray; Resistivity, Sonic, Caliper and Density were used to determine petrophysical parameters. The parameters determined are; volume of shale, porosity, water saturation, irreducible water saturation and bulk volume of water. The thickness of the reservoir varies between 127ft and 1620ft. Average porosity values vary between 0.061 and 0.600; generally decreasing with depth. The mean average computed values for the Petrophysical parameters for the reservoirs are: Bulk Volume of Water, 0.070 to 0.175; Apparent Water Resistivity, 0.239 to 7.969; Water Saturation, 0.229 to 0.749; Irreducible Water Saturation, 0.229 to 0.882 and Volume of Shale, 0.045 to 0.355. The findings will also enhance the proper characterization of the reservoir sands.


2020 ◽  
pp. 2998-3005
Author(s):  
Nowfal A. Nassir ◽  
Ahmed S. Al-Banna ◽  
Ghazi H. Al-Sharaa

The detailed data of the Vp/Vs ratio and porosity logs were used to detect the Oil-Water Contact Zone (OWCZ) of Nahr Umr sandstone and Mishrif limestone reservoir formations in Kumiat (Kt) and Dujaila (Du) oil fields, southeastern Iraq. The results of OWC were confirmed using P-wave, Resistivity, and Water Saturation (Sw) logs of Kt-1 and Du-1 wells. It was found that the values of the oil-water contact zone thickness in Nahr Umr sandstone and Mishrif limestone were approximately one meter and eight meters, respectively. These results suggest that the OWCZ is possibly thicker in the carbonate rock than clastic rock formations. The thickness of OWCZ in the clastic rocks changed from one part to another, depending on several factors including mineral composition, grain size, porosity, pore shape, and fluid type.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 625
Author(s):  
Qianqian Shang ◽  
Jianqiang Chen ◽  
Yun Hu ◽  
Xiaohui Yang ◽  
Lihong Hu ◽  
...  

A facile and environmental-friendly approach was developed for the preparation of the cross-linked nanocellulose aerogel through the freeze-drying process and subsequent esterification. The as-prepared aerogel had a three-dimensional cellular microstructure with ultra-low density of 6.05 mg·cm−3 and high porosity (99.61%). After modifying by chemical vapor deposition (CVD) with hexadecyltrimethoxysilane (HTMS), the nanocellulose aerogel displayed stable super-hydrophobicity and super-oleophilicity with water contact angle of 151°, and had excellent adsorption performance for various oil and organic solvents with the adsorption capacity of 77~226 g/g. Even after 30 cycles, the adsorption capacity of the nanocellulose aerogel for chloroform was as high as 170 g/g, indicating its outstanding reusability. Therefore, the superhydrophobic cross-linked nanocellulose aerogel is a promising oil adsorbent for wastewater treatment.


2020 ◽  
Vol 52 (1) ◽  
pp. 382-389 ◽  
Author(s):  
K. Robertson ◽  
R. Heath ◽  
R. Macdonald

AbstractThe Blane Field is located in the central North Sea in Block 30/3a (Licence P.111), approximately 130 km SE of the Forties Field, in a water depth of 75 m (246 ft). It straddles the UK/Norway median line with 82% of the field in the UK and 18% in Norway. Blane produces undersaturated oil from the Upper Forties Sandstone Member of the Sele Formation and contains good quality light oil within a four-way structural closure; it has a hydrodynamically tilted original oil–water contact. The field stock-tank oil initially in place estimate is 93 MMbbl with an expected ultimate recovery of 33 MMbbl. Blane first oil was achieved in September 2007. The field has been developed by two horizontal producers located on the central crest of the field supported by a water injector drilled on the NW flank. Oil production peaked at c. 17 000 bopd in 2007 and the field is currently in decline. By the end of 2018 production was c. 3000 bopd with 55% water-cut. Cumulative oil production to the end of 2018 was 26.6 MMbbl.


2018 ◽  
Vol 9 ◽  
pp. 508-519 ◽  
Author(s):  
Zhaoyang Xu ◽  
Huan Zhou ◽  
Sicong Tan ◽  
Xiangdong Jiang ◽  
Weibing Wu ◽  
...  

With the worsening of the oil-product pollution problem, oil–water separation has attracted increased attention in recent years. In this study, a porous three-dimensional (3D) carbon aerogel based on cellulose nanofibers (CNFs), poly(vinyl alcohol) (PVA) and graphene oxide (GO) was synthesized by a facile and green approach. The resulting CNF/PVA/GO aerogels were synthesized through an environmentally friendly freeze-drying process and then carbonized to yield CNF/PVA/GO carbon aerogels with low density (18.41 mg cm−3), high porosity (98.98%), a water contact angle of 156° (super-hydrophobic) and high oil absorption capacity (97 times its own weight). The carbonization treatment of the CNF/PVA/GO aerogel not only improved the hydrophobic properties but also enhanced the adsorption capacity and specific surface area. Given the many good performance characteristics and the facile preparation process of carbon aerogels, these materials are viable candidates for use in oil–water separation and environmental protection.


2015 ◽  
Vol 3 (4) ◽  
pp. T183-T195 ◽  
Author(s):  
Augustine Ifeanyi Chinwuko ◽  
Ajana Godwin Onwuemesi ◽  
Emmanuel Kenechukwu Anakwuba ◽  
Clement Udenna Onyekwelu ◽  
Harold Chinedu Okeke ◽  
...  

Coblending of seismic attributes is used in the interpretation of channel geometries in the Rence Field of Niger Delta, Nigeria. We aimed at seismically defining the geometries of hydrocarbon reservoirs with particular emphasis on channels in the shallow marine (offshore) Niger Delta. The coblending application enhanced the ease of detection and the continuity of the channels, leaving the channel environs unchanged. The result of the seismic facies analysis revealed that the Rence Field can be distinguished into two seismic facies, namely, layered complexes and chaotic complexes. The result of well to seismic ties revealed high- and low-amplitude reflection events for sand and shale units, respectively. Seismic structural interpretation of the Rence Field revealed 4 major regional faults and 12 minor faults. Seven of the faults were antithetic, and the rest were synthetic faults. One mega-channel feature that trends east–west was identified in the attribute maps generated. It was characterized by sinuosity of 1.3, with a length of 22,500 m, and a distance of 17,500 m. The average depth of the channel was approximately 170 m with amplitude of 1670 m and the wavelength as high as 7640 m. A depositional model generated from the attribute maps indicated a prograding fluvial environment of deposition. The attribute map also determined that there was shifting in the location of barrier bars within the area. This shifting could be attributed to the growth fault mechanism. At the stoss side of the sinusoidal channel, there were prominent sand point bar sequences. The petrophysical analysis of the well data revealed 90% net-to-gross, 28% porosity, 27% volume of shale, and 24% water saturation indicating that the reservoir was of pay quality. Based on the petrophysical analysis, results, and identification of channel deposits, the study area proved highly promising for hydrocarbon exploration.


2020 ◽  
Vol 5 (1) ◽  
pp. 15-29
Author(s):  
Febrina Bunga Tarigan ◽  
Ordas Dewanto ◽  
Karyanto Karyanto ◽  
Rahmat Catur Wibowo ◽  
Andika Widyasari

In conducting petrophysics analysis, there are many methods on each property. Therefore, it is necessary to determine the exact method on each petrophysical property suitable for application in the field of research in order to avoid irregularities at the time of interpretation. The petrophysical property consists of volume shale, porosity, water saturation, etc. This research used six well data named FBT01, FBT02, FBT03, FBT04, FBT05, and FBT06 and also assisted with core data contained in FBT03. Core data used as a reference in petrophysical analysis because it was considered to have represented or closed to the actual reservoir conditions in the field. The area in this research was in Talangakar Formation, "FBT" Field, South Sumatra Basin. The most suited volume shale method for “FBT” field condition was gamma ray-neutron-density method by seeing its photo core and lithology. As for the effective porosity, the most suited method for the field was neutron-density-sonic method by its core. Oil-water contact was useful to determine the hydrocarbon reserves. Oil-water contact was obtained at a depth of 2277.5 feet on FBT01, 2226.5 feet on FBT02, 2312.5 feet on FBT03, 2331 feet on FBT04, 2296 feet on FBT05, and 2283.5 feet on FBT06. The oil-water contact depth differences at Talangakar formation in FBT field caused by structure in subsurface.


Sign in / Sign up

Export Citation Format

Share Document