scholarly journals Early-warning system for safe drinking-water: A domain-specific modelling approach

2010 ◽  
pp. 86-88
Author(s):  
Syed Imran

The quality of drinking water in Ireland was brought forcefully to the attention of the Irish public with the outbreak of cryptosporidiosis in Galway City during 2007, which affected more than 90,000 people, causing illness in over 240 people, and led to the imposition of a boil water notice in Galway City for 5 months during the peak tourist season. In 2008, the Irish Environmental Protection Agency (EPA) identified 36% of public water supplies (339 supplies) that required detailed profiling, that is, the representation of all the physical items that may constitute the drinking water treatment plant in order to ensure their capability to provide clean and wholesome drinking water. These water supplies, which were included on a Remedial Action List, required a range of actions to their drinking water treatment plants to ensure they could achieve this. The aim is to develop a novel Early Warning System for water ...

2009 ◽  
Vol 36 (6) ◽  
pp. 1095-1106 ◽  
Author(s):  
Heather P. Sim ◽  
Donald H. Burn ◽  
Bryan A. Tolson

Source water protection involves safeguarding water supplies from contamination and depletion. Despite best efforts, spills cannot always be prevented from entering a source water body. However, many spills can be prevented from entering a drinking water treatment plant if an early warning source water monitoring station is used. These stations provide downstream water utilities with advanced notification of spills so the utilities have time to implement their responses. This paper addresses the design of an early warning monitoring station for a riverine source of drinking water. Riverine water supplies face many threats related to accidental spills, which are inherently uncertain in nature. Therefore, designing a monitoring station for the detection of these events requires a probabilistic modelling approach. The design objectives include maximizing the probabilities of detection and of having a threshold amount of warning time. The methodology is applied to a water supply intake on the Grand River in southern Ontario.


2016 ◽  
Vol 16 (4) ◽  
pp. 922-930 ◽  
Author(s):  
L. Richard ◽  
E. Mayr ◽  
M. Zunabovic ◽  
R. Allabashi ◽  
R. Perfler

The implementation and evaluation of biological nitrification as a possible treatment option for the small-scale drinking water supply of a rural Upper Austrian community was investigated. The drinking water supply of this community (average system input volume: 20 m3/d) is based on the use of deep anaerobic groundwater with a high ammonium content of geogenic origin (up to 5 mg/l) which must be treated to prevent the formation of nitrites in the drinking water supply system. This paper describes the implementation and operation of biological nitrification despite several constraints including space availability, location and financial and manpower resources. A pilot drinking water treatment plant, including biological nitrification implemented in sand filters, was designed and constructed for a maximum treatment capacity of 1.2 m3/h. Online monitoring of selected physicochemical parameters has provided continuous treatment performance data. Treatment performance of the plant was evaluated under standard operation as well as in the case of selected malfunction events.


2017 ◽  
Vol 29 (12) ◽  
pp. 2665-2670
Author(s):  
Soleha Mohamat Yusuff ◽  
K.K. Ong ◽  
W.M.Z. Wan Yunus ◽  
A. Fitrianto ◽  
M. Ahmad ◽  
...  

Author(s):  
Ivone Vaz-Moreira ◽  
Vânia Figueira ◽  
Ana R. Lopes ◽  
Alexandre Lobo-da-Cunha ◽  
Cathrin Spröer ◽  
...  

A Gram-positive, aerobic, non-motile, endospore-forming rod, designated DS22T, was isolated from a drinking-water treatment plant. Cells were catalase- and oxidase-positive. Growth occurred at 15–37 °C, at pH 7–10 and with <8 % (w/v) NaCl (optimum growth: 30 °C, pH 7–8 and 1–3 % NaCl). The major respiratory quinone was menaquinone 7, the G+C content of the genomic DNA was 36.5 mol% and the cell wall contained meso-diaminopimelic acid. On the basis of 16S rRNA gene sequence analysis, strain DS22T was a member of the genus Bacillus. Its closest phylogenetic neighbours were Bacillus horneckiae NRRL B-59162T (98.5 % 16S rRNA gene sequence similarity), Bacillus oceanisediminis H2T (97.9 %), Bacillus infantis SMC 4352-1T (97.4 %), Bacillus firmus IAM 12464T (96.8 %) and Bacillus muralis LMG 20238T (96.8 %). DNA–DNA hybridization, and biochemical and physiological characterization allowed the differentiation of strain DS22T from its closest phylogenetic neighbours. The data supports the proposal of a novel species, Bacillus purgationiresistans sp. nov.; the type strain is DS22T ( = DSM 23494T = NRRL B-59432T = LMG 25783T).


2010 ◽  
Vol 10 (2) ◽  
pp. 121-127 ◽  
Author(s):  
Kim van Schagen ◽  
Luuk Rietveld ◽  
Alex Veersma ◽  
Robert Babuška

The performance of a drinking-water treatment plant is determined by the control of the plant. To design the appropriate control system, a control-design methodology of five design steps is proposed, which takes the treatment process characteristics into account. For each design step, the necessary actions are defined. Using the methodology for the pellet-softening treatment step, a new control scheme for the pellet-softening treatment step has been designed and implemented in the full-scale plant. The implementation resulted in a chemical usage reduction of 15% and reduction in the maintenance effort for this treatment step. Corrective actions of operators are no longer necessary.


Sign in / Sign up

Export Citation Format

Share Document