scholarly journals The phosphatidylinositol-3-kinase inhibitor NVP-BKM120 overcomes resistance signals derived from microenvironment by regulating the Akt/FoxO3a/Bim axis in chronic lymphocytic leukemia cells

Haematologica ◽  
2013 ◽  
Vol 98 (11) ◽  
pp. 1739-1747 ◽  
Author(s):  
L. Rosich ◽  
I. Saborit-Villarroya ◽  
M. Lopez-Guerra ◽  
S. Xargay-Torrent ◽  
A. Montraveta ◽  
...  
Blood ◽  
2003 ◽  
Vol 101 (8) ◽  
pp. 3174-3180 ◽  
Author(s):  
Dylan T. Jones ◽  
Kanagasabai Ganeshaguru ◽  
Robert J. Anderson ◽  
Trevor R. Jackson ◽  
K. Richard Bruckdorfer ◽  
...  

Abstract Activation of the phosphatidylinositol 3- kinase/AKT pathway antagonizes apoptosis in diverse cellular systems. We previously showed that human plasma activated AKT and potently blocked the ability of chlorambucil or gamma radiation to induce apoptosis of B-chronic lymphocytic leukemia (CLL) cells. Here we report experiments that identify albumin as the major component of plasma that blocks CLL cell killing by chlorambucil or radiation. Intact plasma depleted of albumin by chromatography on Cibacron blue–Sepharose or plasma from a subject with analbuminemia failed either to activate AKT or to protect CLL cells from chlorambucil-induced apoptosis. Both functions were restored by re-addition of albumin. The protective action of albumin as well as AKT activation was compromised by the binding of lipids. Fluorescence-activated cell sorter (FACScan) analysis demonstrated the uptake of fluoresceinated albumin by CLL cells. Accumulation of albumin in intracellular vesicles was also shown by confocal microscopy. Indirect inhibition of AKT activation by the phosphatidylinositol 3-kinase inhibitor LY294002 reversed the blockade of chlorambucil-induced killing by plasma albumin. The data suggest that activation of AKT consequent to binding of albumin by CLL cells blocks chlorambucil- and radiation-induced apoptosis. Strategies designed to block albumin-induced antiapoptotic signaling may, therefore, be of value in enhancing cytotoxic drug action on CLL cells.


2016 ◽  
Vol 23 (14) ◽  
pp. 3734-3743 ◽  
Author(s):  
Viralkumar Patel ◽  
Kumudha Balakrishnan ◽  
Elena Bibikova ◽  
Mary Ayres ◽  
Michael J. Keating ◽  
...  

2009 ◽  
Vol 15 (8) ◽  
pp. 2767-2776 ◽  
Author(s):  
Mónica López-Guerra ◽  
Gaël Roué ◽  
Patricia Pérez-Galán ◽  
Roberto Alonso ◽  
Neus Villamor ◽  
...  

Blood ◽  
2011 ◽  
Vol 117 (16) ◽  
pp. 4323-4327 ◽  
Author(s):  
Sarah E. M. Herman ◽  
Rosa Lapalombella ◽  
Amber L. Gordon ◽  
Asha Ramanunni ◽  
Kristie A. Blum ◽  
...  

Abstract In patients with chronic lymphocytic leukemia (CLL), lenalidomide can promote humoral immune responses but also induces a distinct disease-specific toxicity of tumor flare and cytokine release. These CLL-specific events result from increased expression of costimulatory molecules on B cells. Here we demonstrate that lenalidomide activation of CLL cells depends on the phosphatidylinositol 3-kinase p110δ (PI3K-δ) pathway. Inhibition of PI3K-δ signaling by the PI3K-δ-inhibiting drug, CAL-101, or by siRNA knockdown of p110δ, abrogates CLL cell activation, costimulatory molecule expression, and vascular endothelial growth factor and basic fibroblast growth factor gene expression that is induced by lenalidomide. In addition, CAL-101 attenuates lenalidomide-mediated increases in immunoglobulin M production by normal B cells. Collectively, these data demonstrate the importance of PI3K-δ signaling for lenalidomide immune modulation. These findings may guide development of strategies for the treatment of CLL that combine lenalidomide with CAL-101, with other inhibitors of the PI3K-δ pathway, or with other agents that target downstream kinases of this signaling pathway.


Haematologica ◽  
2022 ◽  
Author(s):  
Vera Kristin Schmid ◽  
Ahmad Khadour ◽  
Nabil Ahmed ◽  
Carolin Brandl ◽  
Lars Nitschke ◽  
...  

Chronic lymphocytic leukemia (CLL) is a frequent lymphoproliferative disorder of B cells. Although inhibitors targeting signal proteins involved in B cell antigen receptor (BCR) signaling constitute an important part of the current therapeutic protocols for CLL patients, the exact role of BCR signaling, as compared to genetic aberration, in the development and progression of CLL is controversial. To investigate whether BCR expression per se is pivotal for the development and maintenance of CLL B cells, we used the TCL1 mouse model. By ablating the BCR in CLL cells from TCL1 transgenic mice, we show that CLL cells cannot survive without BCR signaling and are lost within eight weeks in diseased mice. Furthermore, we tested whether mutations augmenting B cell signaling influence the course of CLL development and its severity. The Phosphatidylinositol-3-kinase (PI3K) signaling pathway is an integral part of the BCR signaling machinery and its activity is indispensable for B cell survival. It is negatively regulated by the lipid phosphatase PTEN, whose loss mimics PI3K pathway activation. Herein, we show that PTEN has a key regulatory function in the development of CLL, as deletion of the Pten gene resulted in greatly accelerated onset of the disease. By contrast, deletion of the gene TP53, which encodes the tumor suppressor p53 and is highly mutated in CLL, did not accelerate disease development, confirming that development of CLL was specifically triggered by augmented PI3K activity through loss of PTEN and suggesting that CLL driver consequences most likely affect BCR signaling. Moreover, we could show that in human CLL patient samples, 64% and 81% of CLL patients with a mutated and unmutated IgH VH, respectively, show downregulated PTEN protein expression in CLL B cells if compared to healthy donor B cells. Importantly, we found that B cells derived from CLL patients had higher expression levels of the miRNA-21 and miRNA-29, which suppresses PTEN translation, compared to healthy donors. The high levels of miRNA-29 might be induced by increased PAX5 expression of the B-CLL cells. We hypothesize that downregulation of PTEN by increased expression levels of miR-21, PAX5 and miR-29 could be a novel mechanism of CLL tumorigenesis that is not established yet. Together, our study demonstrates the pivotal role for BCR signaling in CLL development and deepens our understanding of the molecular mechanisms underlying the genesis of CLL and for the development of new treatment strategies.


Leukemia ◽  
2004 ◽  
Vol 18 (4) ◽  
pp. 747-755 ◽  
Author(s):  
I N Hahntow ◽  
F Schneller ◽  
M Oelsner ◽  
K Weick ◽  
I Ringshausen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document