scholarly journals Latest culture techniques: cracking the secrets of bone marrow to mass-produce erythrocytes and platelets ex vivo

Haematologica ◽  
2021 ◽  
Author(s):  
Christian A. Di Buduo ◽  
Alicia Aguilar ◽  
Paolo M. Soprano ◽  
Alberto Bocconi ◽  
Carolina P. Miguel ◽  
...  

Since the dawn of medicine, scientists have carefully observed, modeled and interpreted the human body to improve healthcare. At the beginning there were drawings and paintings, now there is three-dimensional modeling. Moving from two-dimensional cultures and towards complex and relevant biomaterials, tissue-engineering approaches have been developed in order to create three-dimensional functional mimics of native organs. The bone marrow represents a challenging organ to reproduce because of its structure and composition that confer it unique biochemical and mechanical features to control hematopoiesis. Reproducing the human bone marrow niche is instrumental to answer the growing demand for human erythrocytes and platelets for fundamental studies and clinical applications in transfusion medicine. In this review, we discuss the latest culture techniques and technological approaches to obtain functional platelets and erythrocytes ex vivo. This is a rapidly evolving field that will define the future of targeted therapies for thrombocytopenia and anemia, but also a long-term promise for new approaches to the understanding and cure of hematologic diseases.

2015 ◽  
Vol 3 (3) ◽  
pp. 24-37 ◽  
Author(s):  
Жихарев ◽  
L. Zhikharev

Fractals are geometric objects, each part of which is similar to the whole object, so that if we take a part and increase its size to the size of the whole object, it would be impossible to notice a difference. In other words, fractals are sets having scale invariance. In mathematics, they are associated primarily with non-differentiable functions. The concept of "fractal" (from the Latin "Fractus" meaning «broken») had been introduced by Benoit Mandelbrot (1924–2010), French and American mathematician, physicist, and economist. Mandelbrot had found that seemingly arbitrary fluctuations in price of goods have a certain tendency to change: it turned out that daily fluctuations are symmetrical with long-term price fluctuations. In fact, Benoit Mandelbrot applied his recursive (fractal) method to solve the problem. Since the last quarter of the nineteenth century, a large number of fractal curves and flat objects have been created; and methods for their application have been developed. From geometrical point of view, the most interesting fractals are "Koch snowflake" and "Pythagoras Tree". Two classes of analogues of the volumetric fractals were created with modern three-dimensional modeling program: "Fractals of growth” – like Pythagoras Tree, “Fractals of separation” – like Koch snowflake; the primary classification was developed, their properties were studied. Empiric data was processed with basic arithmetic calculations as well as with computer software. Among other things, for fractals of separation the task was to create an object with an infinite surface area, which in the future might acquire great importance for the development of the chemical and other industries.


2012 ◽  
Vol 246-247 ◽  
pp. 1237-1240
Author(s):  
Fa Wei He

For three-dimensional modeling of cam profile, we can draw the cam profile firstly, and then stretch it to form a three-dimensional graphic. When drawing, the difficulties exist in how to draw the two-dimensional graphic rapidly and accurately. Accurate calculations can be done with Excel. It will be a very good method to insert data to AutoCAD with required format to form the graphics. After forming the two-dimensional graphics, three-dimensional graphics can be done after several procedures. It is much significant for accurate drawing and CNC automatic programming processing for cam profile, and get high-accuracy plate cam.


2022 ◽  
Vol 23 (2) ◽  
pp. 904
Author(s):  
Emma Verheye ◽  
Jesús Bravo Melgar ◽  
Sofie Deschoemaeker ◽  
Geert Raes ◽  
Anke Maes ◽  
...  

Immunotherapeutic approaches, including adoptive cell therapy, revolutionized treatment in multiple myeloma (MM). As dendritic cells (DCs) are professional antigen-presenting cells and key initiators of tumor-specific immune responses, DC-based immunotherapy represents an attractive therapeutic approach in cancer. The past years, various DC-based approaches, using particularly ex-vivo-generated monocyte-derived DCs, have been tested in preclinical and clinical MM studies. However, long-term and durable responses in MM patients were limited, potentially attributed to the source of monocyte-derived DCs and the immunosuppressive bone marrow microenvironment. In this review, we briefly summarize the DC development in the bone marrow niche and the phenotypical and functional characteristics of the major DC subsets. We address the known DC deficiencies in MM and give an overview of the DC-based vaccination protocols that were tested in MM patients. Lastly, we also provide strategies to improve the efficacy of DC vaccines using new, improved DC-based approaches and combination therapies for MM patients.


Sign in / Sign up

Export Citation Format

Share Document