scholarly journals Effect of Shoulder–Workpiece Interference Depth on the Quality of Friction Stir Welding of AA7075-T6 Aluminium Alloy

Author(s):  
Abbas Akram Abbas ◽  
Hazim H. Abdulkadhum

The joining of high strength aluminium alloy AA7075-T6 sheets of 3 mm thickness was an attempt utilizing friction stir welding process. The effect of interference depth between tool shoulder and surface workpiece on the welding quality and its effect on the mechanical and metallography properties of welded joints were studied. This process is carried out using a composite tool consists of a concave shoulder made of H13 tool steel and cylindrical left-hand thread with 1mm pitch pin (probe) made of cobalt-based alloy MP159. The dimensions of tools were 14mm shoulder diameter and the pin has 5mm diameter and 2.7mm length. The tool rotation speed and welding speed were 981 rpm 169 mm/min respectively, and the tilt angle was 2°. The range of interference depth between the shoulder and workpiece was selected (0.05, 0.1, 0.15, 0.2, 0.25, and 0.3) mm. various tests were executed to evaluate the welding quality. The results show that lack of filling defect appeared on the welding surface at the interference depth 0.05 mm. An invisible tunnel and lack of penetration in the bottom of the stir zone appeared when the interference depths were 0.1 mm and 0.15 mm. Defect-free welds obtained when interference depths were (0.2, 0.25, and 0.3) mm. The welding efficiency of the defect-free welds was in the range (85.3-92.3%) depending on the ultimate tensile strength of the parent alloy.

2021 ◽  
Vol 23 (3) ◽  
pp. 72-83
Author(s):  
Kirill Kalashnikov ◽  
◽  
Andrey Chumaevskii ◽  
Tatiana Kalashnikova ◽  
Aleksey Ivanov ◽  
...  

Introduction. Among the technologies for manufacturing rocket and aircraft bodies, marine vessels, and vehicles, currently, more and more attention is paid to the technology of friction stir welding (FSW). First of all, the use of this technology is necessary where it is required to produce fixed joints of high-strength aluminum alloys. In this case, special attention should be paid to welding thick-walled blanks, as fixed joints with a thickness of 30.0 mm or more are the target products in the rocket-space and aviation industries. At the same time, it is most prone to the formation of defects due to uneven heat distribution throughout the height of the blank. It can lead to a violation of the adhesive interaction between the weld metal and the tool and can even lead to a destruction of the welding tool. The purpose of this work is to reveal regularities of welding tool destruction depending on parameters of friction stir welding process of aluminum alloy AA5056 fixed joints with a thickness of 35.0 mm. Following research methods were used in the work: the obtaining of fixed joints was carried out by friction welding with mixing, the production of samples for research was carried out by electric erosion cutting, the study of samples was carried out using optical metallography methods. Results and discussion. As a result of performed studies, it is revealed that samples of aluminum alloy with a thickness of 35.0 mm have a heterogeneous structure through the height of weld. There are the tool shoulder effect zone and the pin effect zone, in which certain whirling of weld material caused by the presence of grooves on tool surface is distinctly distinguished. It is shown that the zone of shoulders effect is the most exposed to the formation of tunnel-type defects because of low loading force and high welding speeds. It is revealed that tool destruction occurs tangentially to the surface of the tool grooves due to the high tool load and high welding speeds.


2014 ◽  
Vol 18 (suppl.1) ◽  
pp. 29-38 ◽  
Author(s):  
Darko Veljic ◽  
Aleksandar Sedmak ◽  
Marko Rakin ◽  
Nikola Bajic ◽  
Bojan Medjo ◽  
...  

This paper presents experimental and numerical analysis of the change of temperature and force in the vertical direction during the friction stir welding of high-strength aluminium alloy 2024 T3. This procedure confirmed the correctness of the numerical model, which is subsequently used for analysis of the temperature field in the welding zone, where it is different to determine the temperature experimentally. 3D finite element model is developed using the software package Abaqus; arbitrary Lagrangian-Eulerian formulation is applied. Johnson-Cook material law and Coulomb?s Law of friction are used for modelling the material behaviour. Temperature fields are symmetrical with respect to the welding line. The temperature values below the tool shoulder, i.e. in the welding zone, which are reached during the plunge stage, are approximately constant during the entire welding process and lie within the interval 430-502?C. The temperature of the material in the vicinity of the tool is about 500?C, while the values on the top surface of the welding plates (outside the welding zone, but close to the tool shoulder) are about 400?C. The temperature difference between the top and bottom surface of the plates is small, 10-15?C.


2010 ◽  
Vol 638-642 ◽  
pp. 1185-1190 ◽  
Author(s):  
Hui Jie Liu ◽  
Li Zhou ◽  
Yong Xian Huang ◽  
Qi Wei Liu

As a new solid-state welding process, friction stir welding (FSW) has been successfully used for joining low melting point materials such as aluminum and magnesium alloys, but the FSW of high melting point materials such as steels and titanium alloys is still difficult to carry out because of their strict requirements for the FSW tool. Especially for the FSW of titanium alloys, some key technological issues need to solve further. In order to accomplish the FSW of titanium alloys, a specially designed tool system was made. The system was composed of W-Re pin tool, liquid cooling holder and shielding gas shroud. Prior to FSW, the Ti-6Al-4V alloy plates were thermo-hydrogen processed to reduce the deformation resistance and tool wear during the FSW. Based on this, the thermo-hydrogen processed Ti-6Al-4V alloy with different hydrogen content was friction stir welded, and the microstructural characterizations and mechanical properties of the joints were studied. Experimental results showed that the designed tool system can fulfill the requirements of the FSW of titanium alloys, and excellent weld formation and high-strength joint have been obtained from the titanium alloy plates.


2007 ◽  
Vol 539-543 ◽  
pp. 3832-3837 ◽  
Author(s):  
D. Jacquin ◽  
Christophe Desrayaud ◽  
Frank Montheillet

The thermo-mechanical simulation of Friction Stir Welding focuses the interest of the welding scientific and technical community. However, literature reporting material flow modeling is rather poor. The present work is based on the model developed by Heurtier [2004] and aims at improving this thermo-fluid simulation developed by means of fluid mechanics numerical and analytical velocity fields combined together. These various velocity fields are investigated separately and especially according to the power dissipated during the flow. Boundary conditions are considered through a new approach based on the kinematic analysis of the thread of the pin. An equilibrium is established between the vertical motion of the bulk material dragged in the depth of the metal sheet, and its partial circulation around the pin. The analyses of the obtained velocity fields enable the understanding of the welded zone asymmetry and highlights the bulk material mixing between the welded coupons in the depth of the sheet. A regression is performed on the relative sliding velocity of the aluminium according to the surface of the tool: shoulder and pin. Two dimension flow lines in the depth of the metal sheet are then obtained and successfully compared with the results obtained by Colegrove (2004) [1].


2018 ◽  
Vol 178 ◽  
pp. 03003 ◽  
Author(s):  
Ana Bosneag ◽  
Marius Adrian Constantin ◽  
Eduard Niţu ◽  
Monica Iordache

Friction Stir Welding, abbreviated FSW is a new and innovative welding process. This welding process is increasingly required, more than traditional arc welding, in industrial environment such us: aeronautics, shipbuilding, aerospace, automotive, railways, general fabrication, nuclear, military, robotics and computers. FSW, more than traditional arc welding, have a lot of advantages, such us the following: it uses a non-consumable tool, realise the welding process without melting the workpiece material, can be realised in all positions (no weld pool), results of good mechanical properties, can use dissimilar materials and have a low environmental impact. This paper presents the results of experimental investigation of friction stir welding joints to three dissimilar aluminium alloy AA2024, AA6061 and AA7075. For experimenting the value of the input process parameters, the rotation speed and advancing speed were kept the same and the position of plates was variable. The exit date recorded in the time of process and after this, will be compared between them and the influence of position of plate will be identified on the welding seams properties and the best position of plates for this process parameters and materials.


2014 ◽  
Vol 984-985 ◽  
pp. 586-591 ◽  
Author(s):  
R. Ashok Kumar ◽  
M.R. Thansekhar

— For fabricating light weight structures, it requires high strength-to weight ratio. AA6061 aluminium alloy is widely used in the fabrication of light weight structures. A356 aluminium alloy has wide spread application in aerospace industries. Friction stir welding is solid state joining process which is conducting for joining similar and dissimilar materials. The friction stir welding parameters play an important role for deciding the strength of welded joints. In this investigation, A356 and AA6061 alloys were friction stir welded by varying triangular, square, hexagonal pin profiles of tool keeping the remaining parameters same and AA6061 alloys were friction stir welded by varying tool shoulder diameter as 12mm,15mm,18mm without changing other parameters. Tensile properties of each joint have been analyzed microscopically. From the experimental results, it is observed that hexagonal pin profiled tool and 15mm shoulder diameter tool provides higher tensile properties when compared to other tools.


2019 ◽  
Vol 969 ◽  
pp. 828-833 ◽  
Author(s):  
R. Nandhini ◽  
R. Dinesh Kumar ◽  
S. Muthukumaran ◽  
S. Kumaran

The friction stir welding of polyamide 66 with a specially modified tool is studied. A variation of the conventional friction stir welding is investigated by incorporating a friction plate for the purpose of heating the polymer in the course of welding process through the tool shoulder. This in turn, improves the efficiency of the weld. The association of the welding process parameters and the weld performance has been investigated by the grey relational analysis with multi response characteristics like weld tensile strength, percent elongation and hardness. Macrostructure of the weld joint cross section has been explored by Stereo microscope. The maximum weld tensile strength of 63 MPa and a Shore hardness of 60 D at the weld nugget are obtained. The hardness profiles of the welded samples have been analyzed in this investigation.


Author(s):  
Matthew Pitschman ◽  
Jacob W. Dolecki ◽  
Garret W. Johns ◽  
Jun Zhou ◽  
John T. Roth

Friction Stir Welding (FSW) is a relatively new joining technique and has many applications. In FSW, heat generated due to friction between FSW tool and work-piece material softens the material and allows the materials in work-pieces to be stirred and joined together. FSW allows the work-pieces to be joined without reaching the melting point of the material, thus resulting in better welds. However, a large amount of mechanical energy has to be consumed for FSW of high-strength, difficult-to-weld metals such as titanium alloys. Hence, new FSW methods should be investigated to reduce the required energy. In this study, an innovative electrically-enhanced friction stir welding (EEFSW) has been developed. Electric current is passed in welding coupons of Aluminum 6061 plates and its effect on welding process and welds are examined. The results indicate that, with the aid of electric current, improvement in welding speed and reduction in energy consumption is obtainable, which enhances the productivity and widens the range of applications of FSW. Weld properties are found to be affected by the introduced current as well.


Sign in / Sign up

Export Citation Format

Share Document