scholarly journals An Apodictic Review on Recent Approaches in Enzyme Technology

2021 ◽  
Vol 12 (3) ◽  
pp. 3446-3471

Enzymes are the most powerful biochemical moieties, predominantly the working tools in all living systems. Many studies have revealed the usage of various enzymes even in the pre-historical periods. Enzymes are known to be the extremely active biocatalyst that is widely involved in many metabolisms. Living systems explore these biomolecules for their metabolism and are exhaustively explored for various industrial and clinical applications. Due to the increasing need for enzyme-based products, various recent research focuses on exploring distinct enzymes & enzyme sources with relatively enhanced characteristics. The elegant motive of this review is to enable the readers and enzyme researchers to compend the basics of enzymes, explore the enormous recent clinical & industrial applications of enzymes like amylase, cellulase, protease, lipase, and esterase. And also, the review highly emphasizes the various enzyme source and their enriched properties like enzyme activity, annotated by recent research works carried out by various research teams across the globe. The review also accentuates the recent advancements in production technologies and high throughput activity prediction assays for the above-mentioned industrially important enzymes.

Author(s):  
Yan Li ◽  
Jinyong Zhang ◽  
Ning Wang ◽  
Haibo Li ◽  
Yun Shi ◽  
...  

Abstract2019 Novel Coronavirus (2019-nCoV) is a virus identified as the cause of the outbreak of pneumonia first detected in Wuhan, China. Investigations on the transmissibility, severity, and other features associated with this virus are ongoing. Currently, there is no vaccine or therapeutic antibody to prevent the infection, and more time is required to develop an effective immune strategy against the pathogen. In contrast, specific inhibitors targeting the key protease involved in replication and proliferation of the virus are the most effective means to alleviate the epidemic. The main protease of SARS-CoV is essential for the life cycle of the virus, which showed 96.1% of similarity with the main proteaseof 2019-nCoV, is considered to be an attractive target for drug development. In this study, we have identified 4 small molecular drugs with high binding capacity with SARS-CoV main protease by high-throughput screening based on the 8,000 clinical drug libraries, all these drugs have been widely used in clinical applications with guaranteed safety, which may serve as promising candidates to treat the infection of 2019-nCoV.


Author(s):  
Emi Latifah ◽  
Putri Dwi Mulyani ◽  
Yekti Asih Purwestri

Bacteria BSR 2, Pseudomonas alcaligenes (BSR 3), Brevibacillus parabrevis (BSR 8), Brevibacillus sp. (BSR 9), isolated from termite gut and Bacillus licheniformis (BSA B1) isolated from milkfish gut have been known to possess celluloytic activity. However, their lignolytic ability has not been known. This study aimed to determine the lignolytic ability of bacteria isolated from termit (Coptotermes sp.) and milkfish (Chanos chanos Forsskal, 1775) guts and their enzymes characterization. The qualitative test was done through the spot test method, while quantitative assay was performed spectrophotometrically at 335 nm to calculate vanillin concentration. The isolates were grown in Lignin Mineral Medium, then the optical density (OD620) were measured every 24 hours for 5 days using spectrophotometer to determine their growth profile and the best isolation time of the lignolytic enzyme. Based on results, the best lignolytic enzyme isolation time for strains Bacillus licheniformis (BSA B1) and BSR 2 were 5 days, yielding lignolytic enzyme activity of 0.961 ± 0.168 U/mg and 2.176 ± 0.088 U/mg respectively,  while strains Pseudomonas alcaligenes (BSR 3), Brevibacillus parabrevis (BSR 8), and Brevibacillus sp. (BSR 9) were 4 days, yielding of 1.206 ± 0.045 U/mg, 1.162 ± 0.191 U/mg, and 0.896 ± 0.108 U/mg, respectively. The strain BSR 2 showed the highest lignolytic activity compared to other strains. The optimum temperature for lignolytic enzyme activity of BSR 2 was 30 ℃ and the optimum pH was 7. The lignolytic enzyme activity showed that these bacterial isolates can be a chance to be used as new alternative lignolytic enzyme source in commercial bioconversion process.


2021 ◽  
Author(s):  
Gang Liu

Abstract Background The AA9 (auxiliary activities) family of lytic polysaccharide monooxygenases (AA9 LPMOs) are ubiquitous and diverse group of enzymes amongst the fungal kingdom. They catalyze the oxidative cleavage of glycosidic bonds in lignocellulose and exhibit great potential for secondary biorefinery applications. Screening of AA9 LPMOs for desirable properties is crucial for biorefinery industrial applications. However, robust, high-throughput and direct method for AA9 LPMO activity assay, which is prerequisite for screening of LPMOs with excellent properties, is still lacking. Here, we have described a gluco-oligosaccharide oxidase (GOOX) based horseradish peroxidase (HRP) colorimetric method for AA9 LPMO activity assay. Results We cloned and expressed a GOOX gene from Sarocladium strictum in Trichoderma reesei, purified the recombinant SsGOOX, validated its properties, and set up a SsGOOX based HRP colorimetric method for cellobiose concentration assay. Then we expressed two AA9 LPMOs from Thielavia terrestris, TtAA9F and TtAA9G in T. reesei, purified the recombinant proteins, and analyzed their product profiles and regioselectivity towards phosphoric acid swollen cellulose (PASC). TtAA9F was characterized as a C1 type (class 1) LPMO, while TtAA9G was characterized as a C4 type (class 2) LPMO. Finally, the SsGOOX based HRP colorimetric method was used to quantify the total concentration of reducing lytic products from LPMO reaction, and consequently, the activities of both C1 and C4 types of LPMOs were analyzed. These LPMOs could be effectively analyzed with limits of detection (LoDs) lower than 30 nmol/L, and standard curves between A515 and LPMO concentrations with determination coefficients greater than 0.994 were obtained. Conclusions A novel, sensitive and accurate assay method that directly targets the main activity of both C1 and C4 type of AA9 LPMOs was established. This method is easy to use and could be performed on a microtiter plate ready for high-throughput screening of AA9 LPMOs with high properties.


2019 ◽  
Vol 58 (30) ◽  
pp. 10114-10119 ◽  
Author(s):  
Tristan de Rond ◽  
Jian Gao ◽  
Amin Zargar ◽  
Markus de Raad ◽  
Jack Cunha ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2233 ◽  
Author(s):  
Haocong Dong ◽  
Junzhu Li ◽  
Mingguang Chen ◽  
Hongwei Wang ◽  
Xiaochuan Jiang ◽  
...  

High-throughput production of highly efficient photocatalysts for hydrogen evolution remains a considerable challenge for materials scientists. Here, we produced extremely uniform high-quality graphene and molybdenum disulfide (MoS2) nanoplatelets through the electrochemical-assisted liquid-phase exfoliation, out of which we subsequently fabricated MoS2/graphene van der Waals heterostructures. Ultimately, zinc oxide (ZnO) nanoparticles were deposited into these two-dimensional heterostructures to produce an artificial ZnO/MoS2/graphene nanocomposite. This new composite experimentally exhibited an excellent photocatalytic efficiency in hydrogen evolution under the sunlight illumination ( λ > 400   n m ), owing to the extremely high electron mobilities in graphene nanoplatelets and the significant visible-light absorptions of MoS2. Moreover, due to the synergistic effects in MoS2 and graphene, the lifetime of excited carriers increased dramatically, which considerably improved the photocatalytic efficiency of the ZnO/MoS2/graphene heterostructure. We conclude that the novel artificial heterostructure presented here shows great potential for the high-efficient photocatalytic hydrogen generation and the high throughput production of visible-light photocatalysts for industrial applications.


2006 ◽  
Vol 78 (9) ◽  
pp. 3213-3220 ◽  
Author(s):  
Ning Gao ◽  
Wenlei Wang ◽  
Xiaoli Zhang ◽  
Wenrui Jin ◽  
Xuefeng Yin ◽  
...  

2013 ◽  
Vol 405 (14) ◽  
pp. 4969-4973 ◽  
Author(s):  
Tristan de Rond ◽  
Pamela Peralta-Yahya ◽  
Xiaoliang Cheng ◽  
Trent R. Northen ◽  
Jay D. Keasling

Sign in / Sign up

Export Citation Format

Share Document