scholarly journals HDR Degree Bassed Indices and Mhr-Polynomial for the Treatment of COVID-19

2021 ◽  
Vol 12 (6) ◽  
pp. 7214-7225

In this research work, We introduce topological indices, namely as an HDR version of Modified Zagreb topological index (HDRM*), HDR version of Modified forgotten topological index (HDRF*), and HDR version of hyper Zagreb index (HDRHM*). Then the relatively study depends on the structure-property regression analysis to test and compute the chemical applicability of these indices to predict the physicochemical properties of octane isomers. Also, we show these HDR indices have well degeneracy properties compared to other degree-based topological indices. Also, We defined and computed the Mhr-polynomial of the newly indices and applied it on COVID-19 treatments. Also, we discussed some mathematical properties of HDR indices.

2019 ◽  
Vol 27 (1) ◽  
pp. 31-46 ◽  
Author(s):  
Sourav Mondal ◽  
Nilanjan De ◽  
Anita Pal

Abstract In this paper, four novel topological indices named as neighbourhood version of forgotten topological index (FN), modified neighbourhood version of Forgotten topological index (FN*), neighbourhood version of second Zagreb index (M2*) and neighbourhood version of hyper Zagreb index (HMN) are introduced. Here the relatively study depends on the structure-property regression analysis is made to test and compute the chemical applicability of these indices for the prediction of physicochemical properties of octane isomers. Also it is shown that these newly presented indices have well degeneracy property in comparison with other degree based topological indices. Some mathematical properties of these indices are also discussed here.


Author(s):  
Süleyman Ediz

Topological indices have important role in theoretical chemistry for QSPR researches. Among the all topological indices the Randić and the Zagreb indices have been used more considerably than any other topological indices in chemical and mathematical literature. Most of the topological indices as in the Randić and the Zagreb indices are based on the degrees of the vertices of a connected graph. Recently novel two degree concepts have been defined in graph theory; ev-degrees and ve-degrees. In this study we define ev-degree Zagreb index, ve-degree Zagreb indices and ve-degree Randić index by using these new graph invariants as parallel to their corresponding classical degree versions. We compare these new group ev-degree and ve-degree indices with the other well-known and most used topological indices in literature such as; Wiener, Zagreb and Randić indices by modelling some physicochemical properties of octane isomers. We show that the ev-degree Zagreb index, the ve-degree Zagreb and the ve-degree Randić indices give better correlation than Wiener, Zagreb and Randić indices to predict the some specific physicochemical properties of octanes. We investigate the relations between the second Zagreb index and ev-degree and ve-degree Zagreb indices and some mathematical properties of ev-degree and ve-degree Zagreb indices.


2019 ◽  
Vol 27 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Nisar Fatima ◽  
Akhlaq Ahmad Bhatti ◽  
Akbar Ali ◽  
Wei Gao

Abstract It is well known fact that several physicochemical properties of chemical compounds are closely related to their molecular structure. Mathematical chemistry provides a method to predict the aforementioned properties of compounds using topological indices. The Zagreb indices are among the most studied topological indices. Recently, three modified versions of the Zagreb indices were proposed independently in [Ali, A.; Trinajstić, N. A novel/old modification of the first Zagreb index, arXiv:1705.10430 [math.CO] 2017; Mol. Inform. 2018, 37, 1800008] and [Naji, A. M.; Soner, N. D.; Gutman, I. On leap Zagreb indices of graphs, Commun. Comb. Optim. 2017, 2, 99–117], which were named as the Zagreb connection indices and the leap Zagreb indices, respectively. In this paper, we check the chemical applicability of the newly considered Zagreb connection indices on the set of octane isomers and establish general expressions for calculating these indices of two well-known dendrimer nanostars.


2021 ◽  
Vol 12 (6) ◽  
pp. 7249-7266

Topological index is a numerical representation of a chemical structure. Based on these indices, physicochemical properties, thermodynamic behavior, chemical reactivity, and biological activity of chemical compounds are calculated. Acetaminophen is an essential drug to prevent/treat various types of viral fever, including malaria, flu, dengue, SARS, and even COVID-19. This paper computes the sum and multiplicative version of various topological indices such as General Zagreb, General Randić, General OGA, AG, ISI, SDD, Forgotten indices M-polynomials of Acetaminophen. To the best of our knowledge, for the Acetaminophen drugs, these indices have not been computed previously.


2019 ◽  
Vol 11 (01) ◽  
pp. 1950006 ◽  
Author(s):  
Sourav Mondal ◽  
Nilanjan De ◽  
Anita Pal

Topological indices are numeric quantities that transform chemical structure to real number. Topological indices are used in QSAR/QSPR studies to correlate the bioactivity and physiochemical properties of molecule. In this paper, some newly designed neighborhood degree-based topological indices named as neighborhood Zagreb index ([Formula: see text]), neighborhood version of Forgotten topological index ([Formula: see text]), modified neighborhood version of Forgotten topological index ([Formula: see text]), neighborhood version of second Zagreb index ([Formula: see text]) and neighborhood version of hyper Zagreb index ([Formula: see text]) are obtained for Graphene and line graph of Graphene using subdivision idea. In addition, these indices are compared graphically with respect to their response for Graphene and line graph of subdivision of Graphene.


J ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 384-409
Author(s):  
Sourav Mondal ◽  
Nilanjan De ◽  
Anita Pal

Topological indices are numeric quantities that describes the topology of molecular structure in mathematical chemistry. An important area of applied mathematics is the chemical reaction network theory. Real-world problems can be modeled using this theory. Due to its worldwide applications, chemical networks have attracted researchers since their foundation. In this report, some silicate and oxide networks are studied, and exact expressions of some newly-developed neighborhood degree-based topological indices named as the neighborhood Zagreb index ( M N ), the neighborhood version of the forgotten topological index ( F N ), the modified neighborhood version of the forgotten topological index ( F N ∗ ), the neighborhood version of the second Zagreb index ( M 2 ∗ ), and neighborhood version of the hyper Zagreb index ( H M N ) are obtained for the aforementioned networks. In addition, a comparison among all the indices is shown graphically.


Filomat ◽  
2019 ◽  
Vol 33 (3) ◽  
pp. 683-698 ◽  
Author(s):  
Kinkar Das ◽  
Marjan Matejic ◽  
Emina Milovanovic ◽  
Igor Milovanovic

LetG = (V,E) be a simple connected graph of order n (?2) and size m, where V(G) = {1, 2,..., n}. Also let ? = d1 ? d2 ?... ? dn = ? > 0, di = d(i), be a sequence of its vertex degrees with maximum degree ? and minimum degree ?. The symmetric division deg index, SDD, was defined in [D. Vukicevic, Bond additive modeling 2. Mathematical properties of max-min rodeg index, Croat. Chem. Acta 83 (2010) 261- 273] as SDD = SDD(G) = ?i~j d2i+d2j/didj, where i~j means that vertices i and j are adjacent. In this paper we give some new bounds for this topological index. Moreover, we present a relation between topological indices of graph.


2018 ◽  
Vol 26 (1) ◽  
pp. 91-104 ◽  
Author(s):  
Prosanta Sarkar ◽  
Nilanjan De ◽  
Anita Pal

Abstract In chemical graph theory, chemical structures are model edthrough a graph where atoms are considered as vertices and edges are bonds between them. In chemical sciences, topological indices are used for understanding the physicochemical properties of molecules. In this work, we study the generalized Zagreb index for three types of carbon allotrope’s theoretically.


Author(s):  
Micheal Arockiaraj ◽  
Jia-Bao Liu ◽  
M. Arulperumjothi ◽  
S. Prabhu

Aim and Objective: Nanostructures are objects whose sizes are between microscopic and molecular. The most significant of these new elements are carbon nanotubes. These elements have extraordinary microelectronic properties and many other exclusive physiognomies. Recently, researchers have given the attention to the mathematical properties of these materials. The aim and objective of this research article is to investigate the most important molecular descriptors namely Wiener, edge-Wiener, vertex-edge-Wiener, vertex-Szeged, edge-Szeged, edge-vertex-Szeged, total-Szeged, PI, Schultz, Gutman, Mostar, edge-Mostar, and total-Mostar indices of three-layered single-walled titania nanosheets. By computing these topological indices, materials science researchers can have a better understanding of structural and physical properties of titania nanosheets, and thereby more easily synthesizing new variants of titania nanosheets with more amenable physicochemical properties. Methods: The cut method turned out to be extremely handy when dealing with distance-based graph invariants which are in turn among the central concepts of chemical graph theory. In this method, we use the Djokovic ́-Winkler relation to find the suitable edge cuts to leave the graph into exactly two components. Based on the graph theoretical measures of the components, we obtain the desired topological indices by mathematical computations. Results: In this paper, distance-based indices for three-layered single-walled titania nanosheets were investigated and given the exact expressions for various dimensions of three-layered single-walled titania nanosheets. These indices may be useful in synthesizing new variants of titania nanosheets and the computed topological indices play an important role in studies of Quantitative structure-activity relationship (QSAR) and Quantitative structure-property relationship (QSPR). Conclusion: In this paper, we have obtained the closed expressions of several distance-based topological indices of three-layered single-walled titania nanosheet TNS_3 [m,n] molecular graph for the cases m≥ n and m < n. The graphical validations for the computed indices are done and we observe that the Wiener types, Schultz and Gutman indices perform in a similar way whereas PI and Mostar type indices perform in the same way.


Author(s):  
Jibonjyoti Buragohain ◽  
A. Bharali

The Zagreb indices are the oldest among all degree-based topological indices. For a connected graph G, the first Zagreb index M1(G) is the sum of the term dG(u)+dG(v) corresponding to each edge uv in G, that is, M1 , where dG(u) is degree of the vertex u in G. In this chapter, the authors propose a weighted first Zagreb index and calculate its values for some standard graphs. Also, the authors study its correlations with various physico-chemical properties of octane isomers. It is found that this novel index has strong correlation with acentric factor and entropy of octane isomers as compared to other existing topological indices.


Sign in / Sign up

Export Citation Format

Share Document