scholarly journals On Some New Neighborhood Degree-Based Indices for Some Oxide and Silicate Networks

J ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 384-409
Author(s):  
Sourav Mondal ◽  
Nilanjan De ◽  
Anita Pal

Topological indices are numeric quantities that describes the topology of molecular structure in mathematical chemistry. An important area of applied mathematics is the chemical reaction network theory. Real-world problems can be modeled using this theory. Due to its worldwide applications, chemical networks have attracted researchers since their foundation. In this report, some silicate and oxide networks are studied, and exact expressions of some newly-developed neighborhood degree-based topological indices named as the neighborhood Zagreb index ( M N ), the neighborhood version of the forgotten topological index ( F N ), the modified neighborhood version of the forgotten topological index ( F N ∗ ), the neighborhood version of the second Zagreb index ( M 2 ∗ ), and neighborhood version of the hyper Zagreb index ( H M N ) are obtained for the aforementioned networks. In addition, a comparison among all the indices is shown graphically.

Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 1015-1021 ◽  
Author(s):  
Muhammad Saeed Ahmad ◽  
Waqas Nazeer ◽  
Shin Min Kang ◽  
Muhammad Imran ◽  
Wei Gao

AbstractAn important area of applied mathematics is the Chemical reaction network theory. The behavior of real world problems can be modeled by using this theory. Due to applications in theoretical chemistry and biochemistry, it has attracted researchers since its foundation. It also attracts pure mathematicians because it involves interesting mathematical structures. In this report, we compute newly defined topological indices, namely, Arithmetic-Geometric index (AG1index),SKindex,SK1index, andSK2index of the dominating David derived networks [1, 2, 3, 4, 5].


2019 ◽  
Vol 11 (01) ◽  
pp. 1950006 ◽  
Author(s):  
Sourav Mondal ◽  
Nilanjan De ◽  
Anita Pal

Topological indices are numeric quantities that transform chemical structure to real number. Topological indices are used in QSAR/QSPR studies to correlate the bioactivity and physiochemical properties of molecule. In this paper, some newly designed neighborhood degree-based topological indices named as neighborhood Zagreb index ([Formula: see text]), neighborhood version of Forgotten topological index ([Formula: see text]), modified neighborhood version of Forgotten topological index ([Formula: see text]), neighborhood version of second Zagreb index ([Formula: see text]) and neighborhood version of hyper Zagreb index ([Formula: see text]) are obtained for Graphene and line graph of Graphene using subdivision idea. In addition, these indices are compared graphically with respect to their response for Graphene and line graph of subdivision of Graphene.


2019 ◽  
Vol 27 (1) ◽  
pp. 31-46 ◽  
Author(s):  
Sourav Mondal ◽  
Nilanjan De ◽  
Anita Pal

Abstract In this paper, four novel topological indices named as neighbourhood version of forgotten topological index (FN), modified neighbourhood version of Forgotten topological index (FN*), neighbourhood version of second Zagreb index (M2*) and neighbourhood version of hyper Zagreb index (HMN) are introduced. Here the relatively study depends on the structure-property regression analysis is made to test and compute the chemical applicability of these indices for the prediction of physicochemical properties of octane isomers. Also it is shown that these newly presented indices have well degeneracy property in comparison with other degree based topological indices. Some mathematical properties of these indices are also discussed here.


Mathematics ◽  
2018 ◽  
Vol 6 (8) ◽  
pp. 137 ◽  
Author(s):  
Shahid Imran ◽  
Muhammad Siddiqui ◽  
Muhammad Imran ◽  
Muhammad Nadeem

A topological index is a number related to the atomic index that allows quantitative structure–action/property/toxicity connections. All the more vital topological indices correspond to certain physico-concoction properties like breaking point, solidness, strain vitality, and so forth, of synthetic mixes. The idea of the hyper Zagreb index, multiple Zagreb indices and Zagreb polynomials was set up in the substance diagram hypothesis in light of vertex degrees. These indices are valuable in the investigation of calming exercises of certain compound systems. In this paper, we computed the first and second Zagreb index, the hyper Zagreb index, multiple Zagreb indices and Zagreb polynomials of the line graph of wheel and ladder graphs by utilizing the idea of subdivision.


2018 ◽  
Vol 7 (4) ◽  
pp. 6276
Author(s):  
Rajesh Kanna ◽  
Roopa S ◽  
PARASHIVAMURTHY H L

Graph theory has provided chemists with a variety of useful tools, such as topological indices. A topological index Top(G) of a graph G is a number with the property that for every graph H isomorphic to G, Top(H) = Top(G). In this paper, we compute ABC index, ABC4 index, Randi´c connectivity index, Sum connectivity index, GA index , GA5 index, First Zagreb index, Second Zagreb index, First Multiple Zagreb index, Second Multiple Zagreb index, Augmented Zagreb index, Harmonic index and Hyper Zagreb index, First Zagreb polynomial, Second Zagreb polynomial, Third Zagreb polynomial, Forgotten polynomials, Forgotten topological index and Symmetric division index of vitamin D3.


Author(s):  
Rao Li

Let G = (V(G), E(G)) be a graph. The complement of G is denoted by Gc. The forgotten topological index of G, denoted F(G), is defined as the sum of the cubes of the degrees of all the vertices in G. The second Zagreb index of G, denoted M2(G), is defined as the sum of the products of the degrees of pairs of adjacent vertices in G. A graph Gisk-Hamiltonian if for all X ⊂V(G) with|X| ≤ k, the subgraph induced byV(G) - Xis Hamiltonian. Clearly, G is 0-Hamiltonian if and only if G is Hamiltonian. A graph Gisk-path-coverableifV(G) can be covered bykor fewer vertex-disjoint paths. Using F(Gc) and M2(Gc), Li obtained several sufficient conditions for Hamiltonian and traceable graphs (Rao Li, Topological Indexes and Some Hamiltonian Properties of Graphs). In this chapter, the author presents sufficient conditions based upon F(Gc) and M2(Gc)for k-Hamiltonian, k-edge-Hamiltonian, k-path-coverable, k-connected, and k-edge-connected graphs.


2018 ◽  
Vol 14 ◽  
pp. 473-476 ◽  
Author(s):  
Nur Idayu Alimon ◽  
Nor Haniza Sarmin ◽  
Ahmad Erfanian

Assume  is a non-abelian group  A dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. The non-commuting graph of  denoted by  is the graph of vertex set  whose vertices are non-central elements, in which  is the center of  and two distinct vertices  and  are joined by an edge if and only if  In this paper, some topological indices of the non-commuting graph,  of the dihedral groups,  are presented. In order to determine the Edge-Wiener index, First Zagreb index and Second Zagreb index of the non-commuting graph,  of the dihedral groups,  previous results of some of the topological indices of non-commuting graph of finite group are used. Then, the non-commuting graphs of dihedral groups of different orders are found. Finally, the generalisation of Edge-Wiener index, First Zagreb index and Second Zagreb index of the non-commuting graphs of dihedral groups are determined.


2019 ◽  
Vol 3 (2) ◽  
pp. 27-35
Author(s):  
Fazal Dayan ◽  
Muhammad Javaid ◽  
Muhammad Aziz ur Rehman

Naji et al. introduced the leap Zagreb indices of a graph in 2017 which are new distance-degree-based topological indices conceived depending on the second degree of vertices. In this paper, we have defined the first and second leap reduced reciprocal Randic index and leap reduced second Zagreb index for selected wheel related graphs.


Complexity ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Lili Gu ◽  
Shamaila Yousaf ◽  
Akhlaq Ahmad Bhatti ◽  
Peng Xu ◽  
Adnan Aslam

A topological index is a numeric quantity related with the chemical composition claiming to correlate the chemical structure with different chemical properties. Topological indices serve to predict physicochemical properties of chemical substance. Among different topological indices, degree-based topological indices would be helpful in investigating the anti-inflammatory activities of certain chemical networks. In the current study, we determine the neighborhood second Zagreb index and the first extended first-order connectivity index for oxide network O X n , silicate network S L n , chain silicate network C S n , and hexagonal network H X n . Also, we determine the neighborhood second Zagreb index and the first extended first-order connectivity index for honeycomb network H C n .


Sign in / Sign up

Export Citation Format

Share Document