Aging processes of cement stone during thermal degradation and their control

Author(s):  
Sh.M. Rakhimbayev ◽  
◽  
T.V. Anikanova ◽  
I.M. Kolesnikov ◽  
◽  
...  
1981 ◽  
Vol 42 (C1) ◽  
pp. C1-301-C1-307
Author(s):  
I. T. Ritchie ◽  
J. Spitz
Keyword(s):  

The article presents the study of processes of structure formation of cement stone and products of hardening of organic-mineral compositions with fibrous filler (shavings) by the electronic scanning microscopy method. It is established that the additive-free cement stone at the age of 28 days has a dense and homogeneous structure, consists of calcium hydro-silicates, Portlandite and calcite - newgrowths characteristic for cement systems. Cellulose fibers, which make up the bulk of the substance of shavings, are sufficiently active, which determines the high adhesion of the hydration products of the cement binder to their surface. It is shown that the introduction of shavings into the organo-mineral composition leads to inhibition of cement hydration processes. Organo-mineral compositions with different shavings content (two compositions) were analyzed. The first composition is characterized by a fairly dense structure, the cement stone consists of globular nanoscale nuclei of hydrosilicates, Portlandite and calcite. The second composition has a loose porous structure, cement stone consists of non-hydrated cement grains, newgrowths are represented by calcite and vaterite. The structure of the contact zone "osprey fiber-cement stone" in the organo-mineral composition of the first composition indicates a good adhesion of the filler surface with the phases of hydrated cement. The use of shavings as a fibrous filler (the first composition) increases the tensile and bending strength, as well as the wear resistance of organo-mineral compositions. The data obtained by scanning electron microscopy are confirmed by the results of studying the processes of structure formation of cement stone by quantitative x-ray phase analysis.


2016 ◽  
Vol 38 (4) ◽  
pp. 302-306
Author(s):  
V.V. Boyko ◽  
◽  
O.A. Radchenko ◽  
S.V. Riabov ◽  
S.I. Sinelnikov ◽  
...  

2020 ◽  
pp. 31-35
Author(s):  
D.L. Bakirov ◽  
◽  
V.A. Burdyga ◽  
M.M. Fattakhov ◽  
G.N. Gritsay ◽  
...  
Keyword(s):  

2013 ◽  
Vol 56 (4) ◽  
pp. 133-135
Author(s):  
Yuki IKEDA ◽  
Satoru IWAMORI ◽  
Hiroyuki MATSUMOTO ◽  
Kiyoshi YOSHINO ◽  
Itsuo NISHIYAMA ◽  
...  

Author(s):  
P. Singh ◽  
G.T. Galyon ◽  
J. Obrzut ◽  
W.A. Alpaugh

Abstract A time delayed dielectric breakdown in printed circuit boards, operating at temperatures below the epoxy resin insulation thermo-electrical limits, is reported. The safe temperature-voltage operating regime was estimated and related to the glass-rubber transition (To) of printed circuit board dielectric. The TG was measured using DSC and compared with that determined from electrical conductivity of the laminate in the glassy and rubbery state. A failure model was developed and fitted to the experimental data matching a localized thermal degradation of the dielectric and time dependency. The model is based on localized heating of an insulation resistance defect that under certain voltage bias can exceed the TG, thus, initiating thermal degradation of the resin. The model agrees well with the experimental data and indicates that the failure rate and truncation time beyond which the probability of failure becomes insignificant, decreases with increasing glass-rubber transition temperature.


Sign in / Sign up

Export Citation Format

Share Document