scholarly journals Cd40 doesn't Complement The Function Of Epstein-barr Virus (Ebv) Latent Membrane Protein 1 In B Cells Transformation

2012 ◽  
Vol 11 (2) ◽  
pp. 112-116
Author(s):  
Mohammed Nazmul Ahsan ◽  
Anwarul A Akhand

Objective: Epstein–Barr virus (EBV) latent membrane protein 1 (LMP1) is known to plays important role in B cells growth and transformation. LMP1 is considered to be a functional homologue of the CD40 receptor and they can activate many overlapping signaling pathways. In this study, we compared the function of CD40 with that of LMP1 in B cells transformation. Materials and methods: Expression of CD40L was observed in infected B cells with LMP1 mutated EBV. To observe the expression reverse transcription-PCR were performed. Results: This expression of CD40L did not support proliferation and transformation of B cell. Even in vitro proliferation and transformation of B cell infected with LMP1 deleted EBV supplemented with CD40L were also not observed. Conclusion: Despite many similarities shared between CD40 and LMP1, CD40-CD40L interaction didn’t complement on LMP1 mediated B cells transformation in vitro. DOI: http://dx.doi.org/10.3329/bjms.v11i2.8175 Bangladesh Journal of Medical Science Vol. 11 No. 02 April 2012: 112-116

2003 ◽  
Vol 77 (8) ◽  
pp. 5000-5007 ◽  
Author(s):  
Stuart Prince ◽  
Sinead Keating ◽  
Ceri Fielding ◽  
Paul Brennan ◽  
Eike Floettmann ◽  
...  

ABSTRACT Epstein-Barr virus (EBV) is a potent growth-transforming agent of human B cells. It has previously been shown that viral latent membrane protein 1 (LMP1) is essential for EBV-induced transformation of normal B cells and contributes to maintenance of latency in vitro. Using the EBV-positive Burkitt's lymphoma line P3HR1-c16, which lacks LMP1 during latency and which can readily be activated into virus-productive lytic cycle, we found that LMP1 inhibits lytic cycle induction via the transcription factor NF-κB. In addition, LMP1 inhibits lytic cycle progress via two distinct NF-κB-independent mechanisms: one involving the cytosolic C-terminal activating regions and the other involving the transmembrane region of LMP1. These findings indicate that in B cells EBV self-limits its lytic cycle via three distinct LMP1-mediated mechanisms.


2006 ◽  
Vol 81 (1) ◽  
pp. 84-94 ◽  
Author(s):  
Mark Rovedo ◽  
Richard Longnecker

ABSTRACT Latent membrane protein 2A (LMP2A) and LMP2B are viral proteins expressed during Epstein-Barr virus (EBV) latency in EBV-infected B cells both in cell culture and in vivo. LMP2A has important roles in modulating B-cell receptor (BCR) signal transduction by associating with the cellular tyrosine kinases Lyn and Syk via specific phosphotyrosine motifs found within the LMP2A N-terminal tail domain. LMP2A has been shown to alter normal BCR signal transduction in B cells by reducing levels of Lyn and by blocking tyrosine phosphorylation and calcium mobilization following BCR cross-linking. Although little is currently known about the function of LMP2B in B cells, the similarity in structure between LMP2A and LMP2B suggests that they may localize to the same cellular compartments. To investigate the function of LMP2B, B-cell lines expressing LMP2A, LMP2B, LMP2A/LMP2B, and the relevant vector controls were analyzed. As was previously shown, cells expressing LMP2A had a dramatic block in normal BCR signal transduction as measured by calcium mobilization and tyrosine phosphorylation. There was no effect on BCR signal transduction in cells expressing LMP2B. Interestingly, when LMP2B was expressed in conjunction with LMP2A, there was a restoration of normal BCR signal transduction upon BCR cross-linking. The expression of LMP2B did not alter the cellular localization of LMP2A but did bind to and prevent the phosphorylation of LMP2A. A restoration of Lyn levels, but not a change in LMP2A levels, was also observed in cells coexpressing LMP2B with LMP2A. From these results, we conclude that LMP2B modulates LMP2A activity.


2017 ◽  
Vol 92 (2) ◽  
Author(s):  
Alexander M. Price ◽  
Joshua E. Messinger ◽  
Micah A. Luftig

ABSTRACTRecent evidence has shown that the Epstein-Barr virus (EBV) oncogene LMP1 is not expressed at high levels early after EBV infection of primary B cells, despite its being essential for the long-term outgrowth of immortalized lymphoblastoid cell lines (LCLs). In this study, we found that expression of LMP1 increased 50-fold between 7 days postinfection and the LCL state. Metabolic labeling of nascent transcribed mRNA indicated that this was primarily a transcription-mediated event. EBNA2, the key viral transcription factor regulating LMP1, and CTCF, an important chromatin insulator, were recruited to the LMP1 locus similarly early and late after infection. However, the activating histone H3K9Ac mark was enriched at the LMP1 promoter in LCLs relative to that in infected B cells early after infection. We found that high c-Myc activity in EBV-infected lymphoma cells as well as overexpression of c-Myc in an LCL model system repressed LMP1 transcription. Finally, we found that chemical inhibition of c-Myc both in LCLs and early after primary B cell infection increased LMP1 expression. These data support a model in which high levels of endogenous c-Myc activity induced early after primary B cell infection directly repress LMP1 transcription.IMPORTANCEEBV is a highly successful pathogen that latently infects more than 90% of adults worldwide and is also causally associated with a number of B cell malignancies. During the latent life cycle, EBV expresses a set of viral oncoproteins and noncoding RNAs with the potential to promote cancer. Critical among these is the viral latent membrane protein LMP1. Prior work suggests that LMP1 is essential for EBV to immortalize B cells, but our recent work indicates that LMP1 is not produced at high levels during the first few weeks after infection. Here we show that transcription of the LMP1 gene can be negatively regulated by a host transcription factor, c-Myc. Ultimately, understanding the regulation of EBV oncogenes will allow us to better treat cancers that rely on these viral products for survival.


2012 ◽  
Vol 94 (10S) ◽  
pp. 369
Author(s):  
A. G.C. Harris-Arnold ◽  
S. L. Lambert ◽  
S. M. Krams ◽  
O. M. Martinez

Sign in / Sign up

Export Citation Format

Share Document