scholarly journals A new class of potential antidiabetic acetohydrazides: Synthesis, in vivo antidiabetic activity and molecular docking studies

2017 ◽  
Vol 12 (3) ◽  
pp. 319 ◽  
Author(s):  
Mubeen Arif ◽  
Furukh Jabeen ◽  
Aamer Saeed ◽  
Irfan Zia Qureshi ◽  
Nadia Mushtaq

<p class="Abstract">Two new pharmacologically active series of tetrazolopyridine-acetohydrazide conjugates [9 (a-n), 10 (a-n)] were synthesized by reacting a variety of suitably substituted benzaldehydes and isomeric 2-(5-(pyridin-3/4-yl)-2H-tetrazol-2-yl)acetohydrazides (7, 8). The synthesized compounds were analyzed through FTIR, <sup>1</sup>H NMR, <sup>13</sup>C NMR and elemental techniques. These acetohydrazides were screened for their in vivo antidiabetic activity and molecular docking studies. An excellent agreement was obtained as the best docked poses show-ed important binding features mostly based on interactions due to an oxygen atom and aromatic moieties of the series. The compounds 9a, 9c and 10l were found to be the most active in lowering blood glucose, having the potential of being good antidiabetic agents.</p><p><strong>Video Clip of Methodology</strong>:</p><p>Synthesis of 3/4-(2H-tetrazole-5-yl)pyridine: 1 min 57 sec   <a href="https://www.youtube.com/v/CHp8HxlEa2M">Full Screen</a>   <a href="https://www.youtube.com/watch?v=CHp8HxlEa2M">Alternate</a></p>

2018 ◽  
Vol 13 (2) ◽  
pp. 149 ◽  
Author(s):  
Naureen Shehzadi ◽  
Khalid Hussain ◽  
Nadeem Irfan Bukhari ◽  
Muhammad Islam ◽  
Muhammad Tanveer Khan ◽  
...  

<p class="Abstract">The present study aimed at the evaluation of anti-hyperglycemic and hepatoprotective potential of a new drug candidate, 5-[(4-chlorophenoxy) methyl]-1,3,4-oxadiazole-2-thiol (OXCPM) through in vitro and in vivo assays, respectively. The compound displayed excellent dose-dependent ɑ-amylase (28.0-92.0%), ɑ-glucosidase (40.3-93.1%) and hemoglobin glycosylation (9.0%-54.9%) inhibitory effects and promoted the uptake of glucose by the yeast cells (0.2 to 26.3%). The treatment of the isoniazid- and rifampicin- (p.o., 50 mg/kg of each) intoxicated rats with OXCPM (100 mg/kg, p.o.) resulted in restoring the normal serum levels of the non-enzymatic (total bilirubin, total protein and albumin) and bringing about a remarkable decrease in the levels of enzymatic (alanine transaminases, aspartate transaminases and alkaline phosphatase) biomarkers. The molecular docking studies indicated high binding affinity of the compound for hyperglycemia-related protein targets; fructose-1,6-bisphosphatase, beta<sub>2</sub>-adrenergic receptors and glucokinase. The results indicate that OXCPM may not only reduce hyperglycemia by enzyme inhibition but also the disease complications through protection of hemoglobin glycosylation and hepatic injury.</p><p class="Abstract"><strong>Video Clip of Methodology:</strong></p><p class="Abstract">Glucose uptake by yeast cells:   4 min 51 sec   <a href="https://www.youtube.com/v/8cJkuMtV0Wc">Full Screen</a>   <a href="https://www.youtube.com/watch?v=8cJkuMtV0Wc">Alternate</a></p>


Author(s):  
Arifa Begum ◽  
Shaheen Begum ◽  
Prasad Kvsrg ◽  
Bharathi K.

Objective: The 2, 4-thiazolidinedione containing compounds could lead to most promising scaffolds with higher efficiency toward the targets recognized for its antidiabetic activity when combined with azaglycine moiety. The objective of the present work was to merge functionalized aza glycines with 2, 4-thiazolidinediones, perform in silico evaluation by molecular properties prediction and undertake the molecular docking studies with targets relevant to diabetes, bacterial and viral infections using Swiss Dock programme for unraveling the target identification which can be used for further designing.Methods: (i) In silico studies were performed using Molinspiration online tool, Swiss ADME website and Swiss Target Prediction websites to compute the physicochemical descriptors, oral bioavailability and brain penetration. (ii) Molecular docking studies were performed using Swiss Dock web service for enumeration of binding affinities and assess their biological potentiality.Results: The results predicted good drug likeness, solubility, permeability and oral bioavailability for the compounds. All the compounds showed good docking scores as compared to the reference drugs. The N-oleoyl functionalized aza glycine derivative demonstrated superior binding properties towards all the studied target reference proteins, suggesting its significance in pharmacological actions.Conclusion: The binding interactions observed in the molecular docking studies suggest good binding affinity of the oleoyl functionalized aza glycine derivative, indicating that this derivative would be a promising lead for further investigations of anti-viral, anti-inflammatory and anti-diabetic activities.


2019 ◽  
Vol 25 (1) ◽  
pp. 66-72 ◽  
Author(s):  
Li Qiao ◽  
Peng-Peng Cai ◽  
Zhong-Hua Shen ◽  
Hong-Ke Wu ◽  
Cheng-Xia Tan ◽  
...  

AbstractTwo pyrazol-4-carboxamides, 3-(difluoromethyl)-N-(mesitylcarbamoyl)-1-methyl-1H-pyrazole-4-carboxa-mide (7a) and 3-(difluoromethyl)-N-((3,5-dimethylphenyl) carbamoyl)-1-methyl-1H-pyrazole-4-carboxamide (7b) were synthesized and their structures were confirmed by the aid of 1H NMR and HRMS analyses. The structure of the pyrazole-4-carboxamide, 7a was also determined by X-ray diffraction. The preliminary activity results demonstrate that these two compounds exhibit good inhibitory activity against Botrytis cinerea. Further docking results indicated that the key active group is difluoromethyl pyrazole moiety.


RSC Advances ◽  
2015 ◽  
Vol 5 (65) ◽  
pp. 52907-52915 ◽  
Author(s):  
Vijay Singh Parihar ◽  
Nitin J. Pawar ◽  
Sougata Ghosh ◽  
Balu Chopade ◽  
Navanath Kumbhar ◽  
...  

Synthesis of a new class of iminosugars 1–4 has been reported.


2015 ◽  
Vol 6 (8) ◽  
pp. 2693-2700 ◽  
Author(s):  
Aditya Arvindekar ◽  
Tanaji More ◽  
Pavan V. Payghan ◽  
Kirti Laddha ◽  
Nanda Ghoshal ◽  
...  

The 1,8-dihydroxyanthraquinones from the culinary and medicinally important plant Rheum emodi exert anti-hyperglycemic potential but notably different α-glucosidase actions as established by in vitro, in vivo, kinetics and molecular docking studies.


2014 ◽  
Vol 38 ◽  
pp. 338-344 ◽  
Author(s):  
Peruze AYHAN EŞİYOK ◽  
Özlem SEVEN ◽  
Gülüzar EYMUR ◽  
Gamze BORA TATAR ◽  
Didem DAYANGAÇ ERDEN ◽  
...  

2019 ◽  
Vol 16 (7) ◽  
pp. 560-568
Author(s):  
Vijayan R. Akhila ◽  
Maheswari R. Priya ◽  
Daisy R. Sherin ◽  
Girija K. Krishnapriya ◽  
Sreerekha V. Keerthi ◽  
...  

The synthesis of 4-amino-2-arylamino-5-(benzofuran-2-oyl)thiazoles 4a-h, as example of 2,4-diaminothiazole-benzofuran hybrids and an evaluation of their antidiabetic activity, by in vitro and computational methods, are reported. The synthesis of these diaminothiazoles was achieved mechano chemically by a rapid solvent-less method. Their antidiabetic activity was assessed by &#945;-glucosidase and &#945;-amylase inhibition assays. The, IC50 value for &#945;-glucosidase inhibition by 4-amino-5- (benzofuran-2-oyl)-2-(4-methoxyphenylamino)thiazole (4d) was found to be 20.04 &#181;M and the IC50 value for &#945;-amylase inhibition, 195.03 &#181;M, whereas the corresponding values for reference acarbose were 53.38 &#181;M and 502.03 &#181;M, respectively. Molecular docking studies at the active sites of &#945;- glucosidase and α-amylase showed that among the diaminothiazoles 4a-h now studied, 4-amino-5- (benzofuran-2-oyl)-2-(4-methoxyphenylamino)thiazole (4d) has the highest D-scores of -8.63 and -8.08 for &#945;-glucosidase and for α-amylase, with binding energies -47.76 and -19.73 kcal/mol, respectively.


Sign in / Sign up

Export Citation Format

Share Document