scholarly journals Formulation and In vitro Evaluation of Unfolding Type Expandable Gastroretentive Film of Enalapril Maleate

2018 ◽  
Vol 20 (2) ◽  
pp. 148-156 ◽  
Author(s):  
Md Bashir Ullah ◽  
Md Rezaul Karim ◽  
Md Shamsul Alam ◽  
Md Rajib Hassan ◽  
Mohiuddin Ahmed Bhuiyan ◽  
...  

The present work was based on the development and characterization of unfolding type gastroretentive dosage form appropriate for controlled release of enalapril maleate. Drug loaded films were prepared by solid dispersion technique using methocel K15 and eudragit RSPO and eudragit RLPO as polymers and polyethylene glycol 400 (PEG 400) as the plasticizer. The film folded in a capsule shell was shown to unfold in the gastric juice and provide drug release up to 12 h in the acidic medium. Formulations provided satisfactory unfolding characteristics allowing expansion to remain in the stomach. Formulation containing above 60% content of eudragit RSPO and eudgrait RLPO combination of total polymer content provided satisfactory film integrity over 12 hours. The result revealed that formulation F1 showed a minimum percentage of drug release of 63.41% followed by formulation F2, F3, F4 and F5 with 66.76%, 80.21%, 83.26% and 86.92% release in 8 hour respectively. Formulation with high proportion of eudragit RLPO and RSPO combination in total polymer content was found to be slow in drug release and lower the release from the polymeric film over time. As the concentration of HPMC K 15 in total polymer content increased the release rate of enalapril maleate as well as % release from the polymeric film also increased over time. Most of the formulation followed Higuchi release kinetics followed by Korsmeyer release kinetics. The drug release mechanism from the film follows Fickian and Non Fickian release kinetics. The films were evaluated for mechanical properties, in vitro drug release and unfolding behavior based on the mechanical shape memory of polymers. Absence of drug polymer interaction and uniform drug dispersion in the polymeric layers was revealed by DSC, FT-IR and SEM studies.Bangladesh Pharmaceutical Journal 20(2): 148-154, 2017

1970 ◽  
Vol 4 (1) ◽  
pp. 38-48 ◽  
Author(s):  
Santhosh Kumar Mankala ◽  
Nishanth Kumar Nagamalli ◽  
Ramakrishna Raprla ◽  
Rajyalaxmi Kommula

Gliclazide is an oral hypoglycemic agent used in management of non-insulin dependent diabetes mellitus. Among people who are suffering from long term disorders, the major were categorized under diabetes so, a dosage form is needed to provide continuous therapy with high margin of safety & such dosage form can be achieved by microencapsulation. Gliclazide microspheres with sodium alginate (coat material, gum kondagogu, gum guar and xanthan gum (mucoadhesive agents) were prepared by orifice-ionic gelation and emulsification ionic gelation techniques varying concentrations (1:0.25, 1:0.5, 1:0.75 and 1:1). Formulations were then evaluated for surface morphology, particle shape, Carr’s index, microencapsulation efficiency, drug release, mucoadhesion studies. Compatibility studies were performed by FTIR, DSC, and XRD techniques and no interactions were found between drug and excepients used. The microspheres were found spherical and free flowing with emulsion ionic gelation technique with a size range 400-600μm. % drug content and encapsulation efficiency found in the range of 55%-68% and, 86.23%-94.46% respectively. All microspheres showed good mucoadhesive property in in-vitro wash of test. In vitro drug release studies showed that the guar gum has more potentiality to retard the drug release compared to other gums and concentrations. Drug release from the microspheres was found slow following zero order release kinetics with non-fickian release mechanism stating release depended on the coat: core ratio and the method employed. The concentration of 1:1 of SA: GG (EMG 4) found suitable for preparing the controlled release formulation of gliclazide stating emulsification gelation technique is the best among followed.   Key words: Gliclazide; Natural gums; orifice ionic gelation technique; emulsification ionic gelation technique DOI: http://dx.doi.org/10.3329/sjps.v4i1.8865 SJPS 2011; 4(1): 38-48


Author(s):  
Barkat Khan ◽  
Faheem Haider ◽  
Kifayat Shah ◽  
Bushra Uzair ◽  
Kaijian Hou ◽  
...  

This study was carried out to formulate and evaluate controlled release (CR) matrix tablets of Acyclovir using combination of hydrophilic and hydrophobic polymers. Acyclovir is a guanine derivative and is its half-life is short hence administered five times a day using immediate release tablets. Six formulations (F1-F6) were developed using Ethocel and Carbopol in equal combinations at drug-polymer (D:P) ratio of 10:5, 10:6, 10:7, 10:8, 10:9 and 10:10. Solubility study was performed using six different solvents. The compatibility studies were carried out using FTIR and DSC. According to USP, Quality Control and dimensional tests (hardness, friability, disintegration and thickness) were executed. In-vitro drug release studies of Acyclovir was carried out in dissolution apparatus using using 0.1 N HCl medium at constant temperature of 37 ± 0.5 ºC. In order to analyze the drug release kinetics, five different mathematical models were applied to the release data. The results showed that there was no incompatibility between drug and polymers. Physical QC tests were found within limits of USP. The release was retarded upto 24 hrs and non-fickian in-vitro drug release mechanism was found. A formulation developed using blend of polymers, showed excellent retention and desired release profiles thus providing absolute control for 24 hrs.


Author(s):  
Mohini Sihare ◽  
Rajendra Chouksey

Aim: Nateglinide is a quick acting anti-diabetic medication whose potent activity lasts for a short duration. One of the dangerous side effects of nateglinide administration is rapid hypoglycemia, a condition that needs to be monitored carefully to prevent unnecessary fatalities. The aim of the study was to develop a longer lasting and slower releasing formulation of nateglinide that could be administered just once daily. Methods: Matrix tablets of nateglinide were prepared in combination with the polymers hydroxypropylmethylcellulose (HPMC), eudragits, ethyl cellulose and polyethylene oxide and the formulated drug release patterns were evaluated using in vitro and in vivo studies. Conclusion: Of the seventeen formulated matrix tablets tested, only one formulation labelled HA-2 that contained 15% HPMC K4M demonstrated release profile we had aimed for. Further, swelling studies and scanning electron microscopic analysis confirmed the drug release mechanism of HA-2. The optimized formulation HA-2 was found to be stable at accelerated storage conditions for 3 months with respect to drug content and physical appearance. Mathematical analysis of the release kinetics of HA-2 indicated a coupling of diffusion and erosion mechanisms. In-vitro release studies and pharmacokinetic in vivo studies of HA-2 in rabbits confirmed the sustained drug release profile we had aimed for. Keywords: Hydroxypropylmethylcellulose, Matrix tablets, Nateglinide, Sustained release


Author(s):  
Jasvanth E ◽  
Teja D ◽  
Mounika B ◽  
Buchi N Nalluri

Objective: The present investigation was aimed at preparation and evaluation of mouth dissolving films (MDFs) of Ramipril to enhance patient convenience, compliance and to improve bioavailability. Methods: MDFs with 0.5% w/w Ramipril were prepared by a solvent casting method using a wet film applicator. The effects of film formers, wetting/solubilizing, saliva stimulating agents and film modifiers on the physicomechanical and in vitro Ramipril release from MDFs were evaluated. Results: The MDFs prepared were transparent, smooth and showed no re-crystallization upon storage. MDFs casted with hydroxypropyl methylcellulose (HPMC) E3 as film former and polyethylene glycol (PEG-400) as plasticizer showed superior Ramipril release rates and good physicomechanical properties when compared to MDFs with E5 and E15 as film formers. HPMC E3 MDFs with polyvinyl pyrrolidone K30 (PVP K30) and sodium lauryl sulphate (SLS) gave superior drug release properties than MDFs without PVP K30 and SLS. The HPMC E3 MDFs with citric acid (CA) as saliva stimulating and xylitol as soothing agent gave significantly superior in vitro drug release than the MDFs without CA and xylitol. Release kinetics data reveals diffusion as a drug release mechanism. Conclusion: From the obtained results, it can be concluded that the administration of Ramipril as MDF may provide a quick onset of action with enhanced oral bioavailability and therapeutic efficacy.


1970 ◽  
Vol 8 (1) ◽  
pp. 23-30 ◽  
Author(s):  
Abul Kalam Lutful Kabir ◽  
Bishyajit Kumar Biswas ◽  
Abu Shara Shasur Rouf

The objective of this study was to develop a sustained release matrix tablet of aceclofenac usinghydroxypropyl methylcellulose (HPMC K15M and HPMC K100M CR) in various proportions as release controllingfactor by direct compression method. The powders for tableting were evaluated for angle of repose, loose bulkdensity, tapped bulk density, compressibility index, total porosity and drug content etc. The tablets were subjected tothickness, weight variation test, drug content, hardness, friability and in vitro release studies. The in vitro dissolutionstudy was carried out for 24 hours using United States Pharmacopoeia (USP) 22 paddle-type dissolution apparatus inphosphate buffer (pH 7.4). The granules showed satisfactory flow properties, compressibility index and drug contentetc. All the tablets complied with pharmacopoeial specifications. The results of dissolution studies indicated that theformulations F-2 and F-3 could extend the drug release up to 24 hours. By comparing the dissolution profiles with themarketed product, it revealed that the formulations exhibited similar drug release profile. From this study, a decreasein release kinetics of the drug was observed when the polymer concentration was increased. Kinetic modeling of invitro dissolution profiles revealed the drug release mechanism ranges from diffusion controlled or Fickian transport toanomalous type or non-Fickian transport, which was only dependent on the type and amount of polymer used. Thedrug release followed both diffusion and erosion mechanism in all cases. The drug release from these formulationswas satisfactory after 3 months storage in 40°C and 75% RH. Besides, this study explored the optimum concentrationand effect of polymer(s) on acelofenac release pattern from the tablet matrix for 24 hour period.Key words: Aceclofenac; sustained release; hydrophillic matrix; HPMC; direct compression.DOI: 10.3329/dujps.v8i1.5332Dhaka Univ. J. Pharm. Sci. 8(1): 23-30, 2009 (June)


2012 ◽  
Vol 62 (3) ◽  
pp. 383-394 ◽  
Author(s):  
Mohammed S. Khan ◽  
Gowda D. Vishakante ◽  
H. G. Shivakumar

The present investigation was undertaken to fabricate porous nanoparticles of metoprolol tartrate by spray-drying using ammonium carbonate as pore former. Prepared nanoparticles were coated with Eudragit S100 polymer in order to prevent the release of metoprolol tartrate in the upper GI tract. It was shown that nanoparticles with low size ranges can be obtained with a low feed inlet rate. Micromeritic studies confirmed that nanoparticle batches are discrete and free flowing. Effects of the pore former on drug loading, porosity and in vitro release were studied. It was found that there was an increase in drug loading and porosity with increasing the amount of pore former. In vitro drug release studies showed that an increase in pore former made drug release faster. Release kinetics proved that nanoparticles follow a zero-order release mechanism.


2016 ◽  
Vol 19 (1) ◽  
pp. 58-67
Author(s):  
Paroma Arefin ◽  
Ikramul Hasan ◽  
Md Shfiqul Islam ◽  
Md Selim Reza

The present study deals with the formulation and evaluation of Fexofenadine hydrochloride (HCl) loaded sustained release microspheres by emulsion solvent evaporation method with Eudragit RL 100. The effects of percent drug loading on drug encapsulation efficiency, drug content and drug release rate were assessed. In vitro dissolution study was performed spectrophotometrically according to USP paddle method using phosphate buffer (pH 6.8) for 10 hours. The release rate of Fexofenadine HCl from the microspheres was significantly increased with the increase of drug loading. The drug release patterns were simulated in different kinetic orders such as zero order release kinetics, first order release kinetics, Higuchi release kinetics, Korsmeyer-Peppas release kinetics and Hixson-Crowell release kinetics to assess the release mechanism and Higuchi release kinetics was found to be the predominant release mechanism. Morphological changes due to different drug loading were assessed by scanning electron microscopic (SEM) technique. Differential scanning calorimetry and fourier transform infra-red (FT-IR) spectroscopy was performed to evaluate compatibility of drug with the polymer. A statistically significant variation indrug encapsulation efficiency and release rate was observed for variation in drug loading.Bangladesh Pharmaceutical Journal 19(1): 58-67, 2016


2012 ◽  
Vol 10 (2) ◽  
pp. 87-92
Author(s):  
Utpal Das ◽  
Shimul Halder ◽  
Abul Kalam Lutful Kabir ◽  
Harun Or Rashid ◽  
Abu Shara Shamsur Rouf

Indapamide, a low-dose thiazide-type diuretic, is used for the treatment of essential hypertension. In this study, we developed an indapamide sustained release formulation using Methocel K15 MCR (a modified    hydroxypropyl methylcellulose), Methocel K100 LVCR (a modified hydroxypropyl methylcellulose), magnesium stearate, talc and starch 1500 by direct compression. The powders for tableting were evaluated for angle of repose, loose bulk density, tapped bulk density, compressibility index, total porosity etc. The tablets were subjected to thickness, weight variation test, hardness, friability and in vitro release studies. The in vitro dissolution study was carried out in the gastric medium (pH 1.3) for first two hours and then in the intestinal medium (pH 6.8) for 22 hours using United States Pharmacopoeia (USP) 22 paddle-type dissolution apparatus. The granules showed satisfactory flow properties, compressibility index etc. All the tablets complied with pharmacopoeial specifications. The results of    dissolution studies indicated that the formulation F-5 and F-7 (up to 75.36 % drug release in 12 hours) could extend the drug release up to 12 hours. The drug release patterns were simulated in different kinetic orders such as Zero Order release kinetics, First Order release kinetics, Higuchi release kinetics, Korsmeyer-Peppas release kinetics and Hixson-Crowell release kinetics to assess the release mechanism. From the study we observed that Higuchi release    kinetics was the predominant release mechanism than Zero Order and First Order kinetics. The drug release mechanism from the matrix tablets was found to be non Fickian mechanism.   DOI: http://dx.doi.org/10.3329/dujps.v10i2.11785   Dhaka Univ. J. Pharm. Sci. 10(2): 87-92, 2011 (December)  


2020 ◽  
Vol 11 (4) ◽  
pp. 6336-6346
Author(s):  
Sanjeevani Shekhar Deshkar ◽  
Rutuja Prakash Bokare ◽  
Suhas Ashok Todmal

The purpose of the present study was to formulate and evaluate microemulsion based in situ gel of Acyclovir (ACV) for the vaginal delivery. The solubility of ACV in oils and surfactants and co-surfactant was evaluated to identify the components of the microemulsion. Microemulsion region was determined by using the pseudo-ternary phase diagrams for different formulations. Microemulsion formulation was prepared using Labrafil M1994C as oil phase, Cremophor RH40 as surfactant and Polyethylene glycol 400 and Transcutol P as co-surfactant and water. Microemulsion formulations were evaluated for pH, viscosity, conductivity and stability study. In situ gel of ACV, microemulsion was prepared using thermosensitive polymer, poloxamer.In situ gelwas characterized for viscosity, gelling temperature, the effect of dilution on gelling temperature, gelling ability, and in vitro drug release and release kinetics. The globule size of developed microemulsion was less than 100 nm with PDI in the range 0.307 to 0.641. The optimized microemulsion based in situ gel demonstrated shear thinning behaviour, the gelation temperature with and without dilution was in the range of 30-35ºC, and the drug release was sustained over eight hours. Mucoadhesive properties of microemulsion based in situ gel formulations were determined with a texture analyzer using a goat vaginal tissue, and the results indicated that the presence of microemulsion increased the mucoadhesion significantly. Microemulsion based in situ gel was successfully developed for vaginal delivery of Acyclovir.


Author(s):  
MILIND J. AMIN ◽  
KEYUR S. PATEL ◽  
DEEPA R. PATEL ◽  
ZIL P. PATEL ◽  
JAYANTI V. BAJAG

Objective: The aim of the study was to develop sustained release pellets of lornoxicam using Eudragit RLPO and Eudragit RSPO to reduce the dosing frequency. Methods: The sustained release pellets of lornoxicam were prepared by extrusion–spheronization technique using Eudragit RLPO and Eudragit RSPO as release retardant polymers and microcrystalline cellulose as spheronizing agent. A 32 Full factorial design was applied to investigate the combined effect of the two independent variables i.e. concentration of Eudragit RLPO (X1) and concentration of Eudragit RSPO (X2) on the dependent variables, In vitro drug release at 1h (Y1), In vitro drug release at 4 h (Y2) and In vitro drug release at 12 h. (Y3). Results: The optimized formulation (F0) show in vitro drug release 11.24±1.21 %, 43.69±1.28 %, 82.69±1.74 % and 100.24±1.56 % at 1 h, 4 h, 12 h and 24 h respectively. Drug excipients compatibility study by FTIR showed no interaction between drug and excipients. Eudragit RLPO and Eudragit RSPO had a significant effect on in vitro drug release. Conclusion: From all parameters and experimental design evaluation, it was concluded that the drug release rate decreased with an increase the concentration of Eudragit RLPO and Eudragit RSPO. SEM Photomicrograph of pellets revealed that the surface was rough and the pellets were spherical shaped in nature. The in vitro release kinetics revealed higuchi model is followed and drug release is by anamolous diffusion.


Sign in / Sign up

Export Citation Format

Share Document