scholarly journals Combined Effects of Viscous Dissipation and Thermal Radiation on non-Newtonian FluidAlong a Surface with Heat Generation and Uniform Surface Heat Flux

2015 ◽  
Vol 63 (2) ◽  
pp. 97-104 ◽  
Author(s):  
D R Pal ◽  
MA Samad

The paper analyses the effects of Magneto-hydrodynamic (MHD) free convective heat and mass transfer flow on non-Newtonian power law fluids along a continuously moving stretching sheet with radiation, heat generation and viscous dissipation under the simultaneous action of suction, thermal radiation, heat source, uniform transverse magnetic field and viscous dissipation. The governing non-linear partial differential equations describing the flow fields under consideration are transformed into non-linear ordinary differential equations by using appropriate analysis of similarity and then solved the resulting problem numerically by applying Nachtsheim-Swigert shooting iterative technique along with sixth order Runge-Kutta integration scheme. The computational results of the skin friction coefficient (Cf) the rate of heat transfer namely the local Nusselt number (Nux) and the mass transfer coefficient namely the local Sherwood number (Shx) have also been presented in tabular form. In the present study, a comparison has also been done with a published article and found a good agreement.Dhaka Univ. J. Sci. 63(2):97-104, 2015 (July)

2016 ◽  
Vol 27 (2) ◽  
pp. 187-200 ◽  
Author(s):  
MA Samad ◽  
C Podder

An analysis is carried out to investigate the effects of forced convection heat and mass transfer of an electrically conducting, non-Newtonian power-law fluid past a stretching sheet. This has been done under the simultaneous action of suction, radiation, uniform transverse magnetic field, heat generation and viscous dissipation. The stretching sheet is assumed to continuously moving with a power-law velocity and maintaining a uniform surface heat flux. The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations using appropriate similarity transfor-mations. The resulting dimensionless equations are solved numerically using sixth order Runge-Kutta integration scheme with Nachtsheim-Swigert shooting iterative technique. A systematical study of numerical results for the non-dimensional velocity, temperature and concentration profiles are presented graphically. Due to physical and engineering interest, the viscous drag or local Skin-friction coefficient, heat transfer rate or local Nusselt number and mass transfer rate or local Sherwood number are represented in tabular form to illustrate the details of flow characteristics and their dependence on all physically important parameters of different non-Newtonian fluids. A comparison of the present study and previously published paper has also been shown in tabular form.Bangladesh J. Sci. Res. 27(2): 187-200, December-2014


2006 ◽  
Vol 11 (4) ◽  
pp. 331-343 ◽  
Author(s):  
M. S. Alam ◽  
M. M. Rahman ◽  
M. A. Samad

The problem of combined free-forced convection and mass transfer flow over a vertical porous flat plate, in presence of heat generation and thermaldiffusion, is studied numerically. The non-linear partial differential equations and their boundary conditions, describing the problem under consideration, are transformed into a system of ordinary differential equations by using usual similarity transformations. This system is solved numerically by applying Nachtsheim-Swigert shooting iteration technique together with Runge-Kutta sixth order integration scheme. The effects of suction parameter, heat generation parameter and Soret number are examined on the flow field of a hydrogen-air mixture as a non-chemical reacting fluid pair. The analysis of the obtained results showed that the flow field is significantly influenced by these parameters.


2021 ◽  
Author(s):  
Muhammad Yasir ◽  
Masood Khan ◽  
Awais Ahmed ◽  
Malik Zaka Ullah

Abstract In this work, an analysis is presented for the unsteady axisymmetric flow of Oldroyd-B nanofluid generated by an impermeable stretching cylinder with heat and mass transport under the influence of heat generation/absorption, thermal radiation and first-order chemical reaction. Additionally, thermal and solutal performances of nanofluid are studied using an interpretation of the well-known Buongiorno's model, which helps us to determine the attractive characteristics of Brownian motion and thermophoretic diffusion. Firstly, the governing unsteady boundary layer equation's (PDEs) are established and then converted into highly non-linear ordinary differential equations (ODEs) by using the suitable similarity transformations. For the governing non-linear ordinary differential equations, numerical integration in domain [0, ∞) is carried out using the BVP Midrich scheme in Maple software. For the velocity, temperature and concentration distributions, reliable results are prepared for different physical flow constraints. According to the results, for increasing values of Deborah numbers, the temperature and concentration distribution are higher in terms of relaxation time while these are decline in terms of retardation time. Moreover, thermal radiation and heat generation/absorption are increased the temperature distribution and corresponding boundary layer thickness. With previously stated numerical values, the acquired solutions have an excellent accuracy.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Kh. Abdul Maleque

We study an unsteady MHD free convection heat and mass transfer boundary layer incompressible fluid flow past a vertical porous plate in the presence of viscous dissipation, heat generation/absorption, chemical reaction, and Arrhenius activation energy. The plate is moving with uniform velocity. The chemical reaction rate in the function of temperature is also considered. The governing partial differential equations are reduced to ordinary differential equations by introducing local similarity transformation (Maleque (2010)) and then are solved numerically by shooting method using the Nachtsheim-Swigert iteration technique. The results of the numerical solution are then presented graphically as well as the tabular form for difference values of the various parameters.


2013 ◽  
Vol 18 (4) ◽  
pp. 1151-1164 ◽  
Author(s):  
G.V.R. Reddy ◽  
B.A. Reddy ◽  
N.B. Reddy

Abstract The effects of thermal radiation and mass transfer on an unsteady hydromagnetic boundary layer mixed convection flow along a vertical porous stretching surface with heat generation are studied. The fluid is assumed to be viscous and incompressible. The governing partial differential equations are transformed into a system of ordinary differential equations using similarity variables. Numerical solutions of these equations are obtained by using the Runge-Kutta fourth order method along with the shooting technique. Velocity, temperature, concentration, the skin-friction coefficient, Nusselt number and Sherwood number for variations in the governing thermo physical parameters are computed, analyzed and discussed.


2013 ◽  
Vol 61 (1) ◽  
pp. 97-104
Author(s):  
MA Samad ◽  
MR Hossain ◽  
D Kumar

An analysis is carried out to investigate the effects of MHD free convection heat transfer of power-law non-Newtonian fluids along a stretching sheet. This has been done under the simultaneous action of suction, thermal radiation and uniform transverse magnetic field. The stretching sheet is assumed to continuously moving with a power-law velocity and maintaining a uniform surface heat flux. The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations using appropriate similarity transformations. The resulting non-linear equations are solved numerically using Nachtsheim-Swigert shooting iterative technique along with sixth order Runge-Kutta integration scheme. Numerical results for the non-dimensional velocity and temperature profiles are shown graphically and discussed. The effects of skin-friction coefficient and the local Nusselt number which are of physical and engineering interest are studied and presented in the form of tables for the variation of different physically important parameters. A comparison of the present study is also performed with the previously published work and found excellent agreement. Dhaka Univ. J. Sci. 61(1): 97-104, 2013 (January) DOI: http://dx.doi.org/10.3329/dujs.v61i1.15104


2017 ◽  
Vol 9 (4) ◽  
pp. 904-923 ◽  
Author(s):  
Shafqat Hussain

AbstractIn this paper, the problem of magnetohydrodynamics (MHD) boundary layer flow of nanofluid with heat and mass transfer through a porous media in the presence of thermal radiation, viscous dissipation and chemical reaction is studied. Three types of nanofluids, namely Copper (Cu)-water, Alumina (Al2O3)-water and Titanium Oxide (TiO2)-water are considered. The governing set of partial differential equations of the problem is reduced into the coupled nonlinear system of ordinary differential equations (ODEs) by means of similarity transformations. Finite element solution of the resulting system of nonlinear differential equations is obtained using continuous Galerkin-Petrov discretization together with the well-known shooting technique. The obtained results are validated using MATLAB “bvp4c” function and with the existing results in the literature. Numerical results for the dimensionless velocity, temperature and concentration profiles are obtained and the impact of various physical parameters such as the magnetic parameterM, solid volume fraction of nanoparticles 𝜙 and type of nanofluid on the flow is discussed. The results obtained in this study confirm the idea that the finite element method (FEM) is a powerful mathematical technique which can be applied to a large class of linear and nonlinear problems arising in different fields of science and engineering.


2008 ◽  
Vol 86 (9) ◽  
pp. 1057-1066 ◽  
Author(s):  
M S Alam ◽  
M M Rahman ◽  
M A Sattar

The present paper deals with the effects of thermophoresis and the homogeneous chemical reactions of first order on magneto-hydrodynamic mixed convective flow past a heated inclined permeable flat plate in the presence of heat generation or absorption considering the viscous dissipation and Joule heating. The resulting governing partial differential equations are transformed into non-dimensional ordinary differential equations using the usual similarity transformations and then solved numerically by applying the Nachtsheim–Swigert shooting iteration technique together with the sixth-order Runge–Kutta integration scheme. Comparison with previously published work is performed and very good agreement is obtained. A parametric study of the governing parameters is carried out and the results are displayed graphically. The results show that viscous drag, rate of heat transfer, and wall deposition flux decreases as the angle of inclination increases. It is also observed that due to the presence of the first-order homogeneous chemical reaction, the concentration decreases with increasing values of the chemical reaction parameter.PACS Nos.: 44.20.+b, 47.65.–d, 47.70.Fw


2013 ◽  
Vol 18 (2) ◽  
pp. 461-474 ◽  
Author(s):  
M.M. Nandeppanavar ◽  
M.N. Siddalingappa

In this present paper, we have discussed the effects of viscous dissipation and thermal radiation on heat transfer over a non-linear stretching sheet through a porous medium. Usual similarity transformations are considered to convert the non-linear partial differential equation of motion and heat transfer into ODE’s. Solutions of motion and heat transfer are obtained by the Runge-Kutta integration scheme with most efficient shooting technique. The graphical results are presented to interpret various physical parameters of interest. It is found that the velocity profile decreases with an increase of the porous parameter asymptotically. The temperature field decreases with an increase in the parametric values of the Prandtl number and thermal radiation while with an increase in parameters of the Eckert number and porous parameter, the temperature field increases in both PST (power law surface temperature) and PHF (power law heat flux) cases. The numerical values of the non-dimensional wall temperature gradient and wall temperature are tabulated and discussed.


1970 ◽  
Vol 30 ◽  
pp. 76-88
Author(s):  
M Mohebujjaman ◽  
MA Samad

An analysis is carried out to study the flow, heat and mass transfer free convection characteristics in an electrically conducting fluid near an isothermal linearly stretching permeable vertical sheet when buoyancy force opposes the flow. The equations governing the flow, temperature and concentration field are reduced to a system of coupled non-linear ordinary differential equations. These non-linear differential equations are integrated numerically by using Nachtsheim-Swigert [1] shooting iteration technique along with sixth order Runge-Kutta integration scheme. Finally the numerical results are presented through graphs and tables. GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) 30 (2010) 76-88  DOI: http://dx.doi.org/10.3329/ganit.v30i0.8505


Sign in / Sign up

Export Citation Format

Share Document