scholarly journals Synthesis and Characterization of Mixed Ligand Complexes of Copper(II) with Adenine and Dicarboxylic Acids

2021 ◽  
Vol 69 (2) ◽  
pp. 76-81
Author(s):  
Sumaia Abdullah ◽  
MS Rahman ◽  
Humaira Yeasmin ◽  
AA Shaikh ◽  
Pradip K Bakshi

Three mixed ligand complexes of copper(II) with adenine and dicarboxylic acids have been synthesized. The resulting complexes were characterized by their melting point, solubility, metal content analysis, FT-IR and UV-visible spectroscopy, magnetic measurement, thermal analysis, cyclic voltammetric measurement and X-ray powder diffraction study. The products are microcrystalline powder, slightly soluble in water and decompose at high temperature. Under experimental condition, the ligands adenine (Ade) behaves as a neutral ligand, whereas oxalic acid (OxH2), succinic acid (SucH2) and tartaric acid (TarH2) are doubly deprotonated to form dianionic ligands that are coordinated to the Cu(II) ion. The Cu(II) content analysis of the complexes confine to their stoichiometry [Cu(Ade)(L)(H2O)] (L = Ox, Suc, or Tar dianion). Electrochemical redox behavior of the complexes in their reaction medium was also examined. They exhibit quasi-reversible one-electron transfer processes. Dhaka Univ. J. Sci. 69(2): 76-81, 2021 (July)

2018 ◽  
Vol 34 (6) ◽  
pp. 2867-2871
Author(s):  
Deepika Jaiswal ◽  
Sudha Yadava

Some novel mixed ligand complexes of Mn(III) with glycine ligand namely [Mn(gly)2 Cl(en)], [Mn(gly)2 Br(en)], [Mn(gly)2 N3 (en)] and [Mn(gly)2 NCS(en)] have been synthesized starting from Mn(gly)2 Cl, Mn(gly)2 Br, Mn(gly)2N3 and Mn(gly)2 NCS respectively. These newly synthesized complexes have been characterized by UV/Vis, FT-IR and Mass spectrometry. The spectroscopic data suggest distorted octahedral geometry for all these mixed ligand complexes. The λmax values of these complexes for 5T2g → 5Eg transitions are 482 nm for [Mn(gly)2N3(en)], 488 for [Mn(gly)2NCS(en)], 486 for [Mn(gly)2 Br(en)] and 484 for [Mn(gly)2Cl(en)], all these transitions are red shifted in comparison to their parent complexes. The ligand field parameters such as 10 Dq, B and β have also been calculated and suggest covalent metal ligand bonding. One peculiar finding is that the FT-IR spectra shows frequencies for both free and coordinated NH2 group in all complexes indicating that the ethylenediamine ligand present here is non bridging in nature. The mass spectrometry results show molecular ion peaks at m/z 300, 345, 307 and 323 for [Mn(gly)2Cl(en)], [Mn(gly)2Br(en)], [Mn(gly)2N3(en)] and [Mn(gly)2NCS(en)] respectively. The coordination of ethylenediamine to Mn(III) enhances its efficiency towards decolourization methyl red dye.


1983 ◽  
Vol 56 (10) ◽  
pp. 3138-3141 ◽  
Author(s):  
Nishi Gupta ◽  
Chandra Pal Singh Chandel ◽  
Prakash Chandra Gupta ◽  
Chand Mal Gupta

2019 ◽  
Vol 70 (1) ◽  
pp. 36-40
Author(s):  
Rana Abdulilah Abbas ◽  
Amer J.jarad ◽  
Ion Marius Nafliu ◽  
Aurelia Cristina Nechifor

Co+2, Ni+2, Cu+2 as well Zn+2 compounds mixed ligand from 8-hydroxyquinoline(8-HQ) also tributylphosphine (PBu3) have been attended at aquatic ethyl alcohol for (1:2:2) (M:8-HQ:PBu3). Produced complexes have been identified by utilizing atomic absorption flame, FT-IR as well UV-Vis spectrum manners also magnetic susceptibility as well as conductivity methods. At addendum antibacterial efficiency from the ligands as well complexes oboist three species about bacteria have been as well examined. Ligands and their complexes show good bacterial efficiencies. Of the gained datum the octahedral geometry was proposed into whole prepared complexes.


2021 ◽  
Vol 12 (2) ◽  
pp. 1962-1973

Antibiotic resistance of pathogens to the current commercially available drugs is a serious problem. To curve this problem, the discovery of active compounds with a new mode of action is insistent. In line with this, we report two new complexes; mononuclear [Co(L1)2(L2)(H2O)]Cl2 and binuclear [Co2(L1)4(L2)(H2O)2]Cl4 using precursor complex, [Co(L1)2(H2O)2]Cl2, synthesized before; where L1: 2,2’-bipyridine and L2: ethylenediamine. The precursor complex was prepared from CoCl2.6H2O and L1 in ethanol, treated with a different mole of L2 under optimized reaction conditions to give the corresponding mono-and binuclear cobalt(II) mixed ligand complexes. These complexes were characterized using the spectroscopic technique (ICP-OES, UV-Vis, FT-IR) and physicochemical methods (chloride determination, thermal analysis, and conductance measurement). Their antibacterial activities were also tested against two Gram-negative (Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae)) and two Gram-positive (Staphylococcus aureus (S. aureus), Streptococcus pyogenes (S. pyogenes)) bacteria using the disc diffusion method. The new complexes showed better activities against K. pneumoniae than the reference Gentamycin. Furthermore, [Co(L1)2(L2)(H2O)]Cl2 demonstrated better activity than Gentamycin against S. aureus and E. coli.


Sign in / Sign up

Export Citation Format

Share Document