scholarly journals Synthesis, Characterization and Antibacterial Activity from Mixed Ligand Complexes of 8-Hydroxyquinoline and Tributylphosphine for Some Metal Ions

2019 ◽  
Vol 70 (1) ◽  
pp. 36-40
Author(s):  
Rana Abdulilah Abbas ◽  
Amer J.jarad ◽  
Ion Marius Nafliu ◽  
Aurelia Cristina Nechifor

Co+2, Ni+2, Cu+2 as well Zn+2 compounds mixed ligand from 8-hydroxyquinoline(8-HQ) also tributylphosphine (PBu3) have been attended at aquatic ethyl alcohol for (1:2:2) (M:8-HQ:PBu3). Produced complexes have been identified by utilizing atomic absorption flame, FT-IR as well UV-Vis spectrum manners also magnetic susceptibility as well as conductivity methods. At addendum antibacterial efficiency from the ligands as well complexes oboist three species about bacteria have been as well examined. Ligands and their complexes show good bacterial efficiencies. Of the gained datum the octahedral geometry was proposed into whole prepared complexes.

2021 ◽  
Vol 33 (8) ◽  
pp. 1911-1918
Author(s):  
T.O. Aiyelabola ◽  
E.O. Akinkunmi ◽  
O Osungunna

The coordination compounds of propanedioic acid with cobalt(II), nickel(II) and copper(II) ions were synthesized using metal:ligand 1:2. In addition to this, mixed ligand complexes using the same metal ions with propanedioic acid as the primary ligand and N,N'-dihydroxy-2,3-butanediimine as the secondary ligand were also synthesized using M:L1:L2 (1:1:1) where L1 = propanedioic acid, L2 = N,N'-dihydroxy-2,3-butanediimine and M = Cu(II), Ni(II) and Cu(II). The synthesized compounds were characterized using FTIR, UV-vis, magnetic susceptibility measurement and percentage metal composition. The ligand and its metal complexes were tested for their cytotoxic and antibacterial activities. Results indicated that a dimeric square planar geometry was assumed by the cobalt(II) and nickel(II) propanedioic acid complexes. Octahedral geometry was proposed for both cobalt(II) and copper(II) mixed ligand complexes. A dinuclear square pyramidal geometry was suggested for the copper(II) propanedioic acid complex and square planar/octahedral geometry for the nickel(II) mixed ligand complex. The copper(II) propanedioic acid complex elicited the best cytotoxic activity. On the other hand, the nickel(II) propanedioic acid complex showed the remarkable antimicrobial activity. The compounds exhibited good antimicrobial activity in most of the cases with the exception of the cobalt(II) propanedioic acid complex. It was concluded that coordination of the ligands to the metal ions lowered the toxicity of the ligands. It was further concluded that the antimicrobial activity of the compounds was partly dependent on the synergism/additive effect of the intrinsic therapeutic properties of the metal ion and the ligands within the coordination sphere of the complexes synthesized. And this is also in part a function of the geometry assumed by the complexes.


2020 ◽  
Vol 71 (6) ◽  
pp. 1-8
Author(s):  
Rana Abdulilah Abbas ◽  
Afnan E. Abd-Almonuim ◽  
Amer J. Jarad ◽  
Szidonia-Katalin Tanczos ◽  
Paul Constantin

Azo ligand 11-(4-methoxyphenyl azo)-6-oxo-5,6-dihydro-benzo[4,5] imidazo[1,2-c] quinazoline-9-carboixylic acid was derived from 4-methoxyaniline and 6-oxo-5,6-dihydro-benzo[4,5]imidazo[1,2-c]quinazoline-9-carboxylic acid. The presence of azo dye was identified by elemental analysis and spectroscopic methods (FT-IR and UV-Vis). The compounds formed have been identified by using atomic absorption in flame, FT.IR, UV-Vis spectrometry magnetic susceptibility and conductivity. In order to evaluate the antibacterial efficiency of ligand and its complexes used in this study three species of bacteria were also examined. Ligand and its complexes showed good bacterial efficiencies. From the obtained data, an octahedral geometry was proposed for all prepared complexes.


2013 ◽  
Vol 10 (2) ◽  
pp. 396-404
Author(s):  
Baghdad Science Journal

Complexes of some metal ions ( Mn(I? ) , Co(??) , Ni(??) ,Cu (??) , Zn(I?) , Cd (??) , and Hg(??) ) with 8-hydroxyquinoline (Oxine) and 2- Picoline (2-pic ) have been synthesized and characterized on the basis of their FT-IR. and Uv-visible spectroscopy ,atomic absorption molar conductivity measurements and magnetic susceptibility ,from the results obtained the following general formula has been given for prepared complexes [M (oxine)2 (2-pic)2]where M = M(??) = Mn , Co , Ni , Cu , Zn , Cd , Hg(oxine)- = ionic ligand 8-hydroxyquinolin (oxinato)(2- pic) = 2- picoline


2017 ◽  
Vol 27 (5) ◽  
pp. 55
Author(s):  
Rehab K. Al-Shemary ◽  
Inam H. Ibrahim ◽  
Nibras A. Al-marsomy

Schiff base ligand [4-(2-hydroxy-1, 2-diphenylethylideneamino)-N-pyrimidin-2-yl)benzene sulfonamide] (L) was prepared through a condensation reaction of  sulfadiazine and benzoin in acidic medium. The prepared ligand has been characterized with different techniques (C.H.N.S, FT-IR, UV-Vis and 1H&13C-N.M.R). Mixed ligand complexes of some divalent metal ions [Co(II), Mn(II), Ni(II),Cu(II) and Hg(II)] were prepared by the  reaction of [4-(2-hydroxy-1,2-diphenylethylidene amino)-N-pyrimidin-2-yl)benzene sulfonamide](L)  and 1,10-Phenanthronline with the metal ions in basic conditions. The prepared complexes were characterized and their astrochemical structures and geometries were suggested depending upon data of (UV-Vis, FT-IR, atomic absorption, micro elemental analysis The following general formula was achieved : [M(PHN)(L)2], where  M represent  (Co(II)- Cu(II)-Mn(II)- Ni(II) and Hg(II)). Electronic spectra supported by magnetic moment's revealed octahedral geometries for all the prepared complexes. The mixed complexes showed resistivity to different bacteria such as(Pseudomonas aeruginosa), (Bacillus subtilis), (Escherichia coli), and (staphylococcus aureus).


2021 ◽  
Vol 12 (2) ◽  
pp. 96-103
Author(s):  
E.T. Omotade ◽  
A.P. Oviawe

The mixed ligand complexes involving Fe(II), Co(II) and Ni(II) ions, Schiff base 4 phenylpyrazal-5-one (L1) and L-lysine (Lys) were synthesized. The complexes were characterized on the basis of their elemental analysis, conductivity measurements, FT-IR, MS,1H-NMR and 13C-NMR spectral studies. All the synthesized complexes were subjected to simultaneous thermogravimetric analysis to study their decomposition mechanism and thermal stability. The mixed ligand complexes were screened against some strains of bacteria and fungi to study their antimicrobial activity. The complexes were found to be non-electrolytes and possessed octahedral geometry. The results showed that the metal complexes possessed better antimicrobial activity than the free ligands.


Author(s):  
Mohammed Al-Amery1 ◽  
Ashraf Saad Rasheed ◽  
Dina A. Najeeb

Five new mixed ligand metal complexes have been synthesized by the reaction of divalent transition metal ions (Hg, Ni, Zn, Cu and Cd) with 2-(naphthalen-l-ylamino)-2-phenylacetonitrile (L1 ) and 1,10-phenanthroline (L2). The coordination likelihood of the two ligands toward metal ions has been suggested in the light of elemental analysis, UV-Vis spectra, FTIR, 1H-NMR, flam atomic absorption, molar conductance and magnetic studies. Results data suggest that the octahedral geometry for all the prepared complexes. Antibacterial examination of synthesized complexes in vitro was performed against four bacterias. Firstly, Gram-negative bacteria namely, Pseudomonas aerugin and Escherichia. Secondly, Gram-positive bacteria namely, Bacillus subtilis, Staphylococcuaurouss. Results data exhibit that the synthesized complexes exhibited more biological activity than tetracycline pharmaceutical.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Dolan Sengupta ◽  
Snigdha Gangopadhyay ◽  
Sanchita Goswami ◽  
Arnab Dutta ◽  
Vikash Kumar ◽  
...  

Mixed ligand complexes of Fe(III) with aromatic thiohydrazides of general composition [Fe(acac)(L)2] have been synthesized and characterized (acac-acetylacetonate, L = bidentate uninegative aromatic thiohydrazide ligand, for example, thiobenzhydrazide, 2-hydroxythiobenzhydrazide, furan-2-thiohydrazide, and thiophen-2-thiohydrazide). The magnetic susceptibility data and the EPR spectra of these complexes suggested the formation of rhombically distorted low spin iron center (d5) in octahedral environment, which was also supported by the UV-vis spectral data of the complexes. Biological studies of these complexes also indicated that the iron-thiohydrazido complexes have superior antibacterial properties compared to the corresponding ligands.


Sign in / Sign up

Export Citation Format

Share Document