scholarly journals Performance of k-ω and k-ε Model for Blood Flow Simulation in Stenosed Artery

2021 ◽  
Vol 40 (2) ◽  
pp. 111-125
Author(s):  
Md Alamgir Kabir ◽  
Kausari Sultana ◽  
Md Ashraf Uddin

Blood flow through arterial stenosis can play a crucial role at the post stenotic flow regions. This produces a disturbance in the normal flow path. The intensity of the flow disturbance (i.e. laminar, transitional and turbulent flow characteristics) depends not only on the severity of the stenosis but also on the pattern of the geometrical model. In that case, the turbulence model plays vital role to measure these flow disturbances. However, it is very important to choose a proper flow simulation model that can predict the flow behavior of fluid accurately and efficiently with less computational cost and time. Thus, this study aims to analyze the results of two turbulence models i.e. k-ω and k-ε for blood flow simulation to compare their performance for the prediction of the flow behavior. Simulations have been performed with 75% area reductions in the arteries. The results of simulation show that, the flow parameters obtained from the k-ε model exhibits lack of fits with the experimental data. On the other hand, k-ω model can capture large scale gradient in the different parameters of blood flow and has a good agreement with the experimental data. This study suggests that, k-ω model has the better performance comparing to k-ε model to predict the behavior of blood flow in stenosed artery. GANIT J. Bangladesh Math. Soc. 40.2 (2020) 111-125

2021 ◽  
Vol 104 (1) ◽  
pp. 003685042110080
Author(s):  
Zheqin Yu ◽  
Jianping Tan ◽  
Shuai Wang

Shear stress is often present in the blood flow within blood-contacting devices, which is the leading cause of hemolysis. However, the simulation method for blood flow with shear stress is still not perfect, especially the multiphase flow model and experimental verification. In this regard, this study proposes an enhanced discrete phase model for multiphase flow simulation of blood flow with shear stress. This simulation is based on the discrete phase model (DPM). According to the multiphase flow characteristics of blood, a virtual mass force model and a pressure gradient influence model are added to the calculation of cell particle motion. In the experimental verification, nozzle models were designed to simulate the flow with shear stress, varying the degree of shear stress through different nozzle sizes. The microscopic flow was measured by the Particle Image Velocimetry (PIV) experimental method. The comparison of the turbulence models and the verification of the simulation accuracy were carried out based on the experimental results. The result demonstrates that the simulation effect of the SST k- ω model is better than other standard turbulence models. Accuracy analysis proves that the simulation results are accurate and can capture the movement of cell-level particles in the flow with shear stress. The results of the research are conducive to obtaining accurate and comprehensive analysis results in the equipment development phase.


Author(s):  
Mahdi Esmaily Moghadam ◽  
Yuri Bazilevs ◽  
Tain-Yen Hsia ◽  
Alison Marsden

A closed-loop lumped parameter network (LPN) coupled to a 3D domain is a powerful tool that can be used to model the global dynamics of the circulatory system. Coupling a 0D LPN to a 3D CFD domain is a numerically challenging problem, often associated with instabilities, extra computational cost, and loss of modularity. A computationally efficient finite element framework has been recently proposed that achieves numerical stability without sacrificing modularity [1]. This type of coupling introduces new challenges in the linear algebraic equation solver (LS), producing an strong coupling between flow and pressure that leads to an ill-conditioned tangent matrix. In this paper we exploit this strong coupling to obtain a novel and efficient algorithm for the linear solver (LS). We illustrate the efficiency of this method on several large-scale cardiovascular blood flow simulation problems.


Author(s):  
Yi Dong Bao ◽  
Dong Mei Wu

A physical mesh-less soft tissue cutting model with the viscoelastic creep characteristics has been proposed in this paper. The model is composed of filled spheres which are connected by Kelvin structure, so as to realize the cutting with viscoelastic creep characteristics. Then, it is further compared with the mass spring model in order to verify the effectiveness of the model. Secondly, a range-based Smoothed Particle Hydrodynamics (SPH) method with variable smoothing length is proposed, in order to simulate the blood flow simulation effect in the virtual surgery training system. Finally, the two are combined to be applied to the kidney soft tissue cutting experiment in surgery trainings. Experiments show there is a significant improvement on the cutting and simulation effect in terms of the viscoelasticity of the soft tissue cutting and the pressure and viscous force of blood flow.


Author(s):  
David Forbes ◽  
Gary Page ◽  
Martin Passmore ◽  
Adrian Gaylard

This study is an evaluation of the computational methods in reproducing experimental data for a generic sports utility vehicle (SUV) geometry and an assessment on the influence of fixed and rotating wheels for this geometry. Initially, comparisons are made in the wake structure and base pressures between several CFD codes and experimental data. It was shown that steady-state RANS methods are unsuitable for this geometry due to a large scale unsteadiness in the wake caused by separation at the sharp trailing edge and rear wheel wake interactions. unsteady RANS (URANS) offered no improvements in wake prediction despite a significant increase in computational cost. The detached-eddy simulation (DES) and Lattice–Boltzmann methods showed the best agreement with the experimental results in both the wake structure and base pressure, with LBM running in approximately a fifth of the time for DES. The study then continues by analysing the influence of rotating wheels and a moving ground plane over a fixed wheel and ground plane arrangement. The introduction of wheel rotation and a moving ground was shown to increase the base pressure and reduce the drag acting on the vehicle when compared to the fixed case. However, when compared to the experimental standoff case, variations in drag and lift coefficients were minimal but misleading, as significant variations to the surface pressures were present.


Sign in / Sign up

Export Citation Format

Share Document