scholarly journals Effect of heat source and chemical reaction on MHD flow past a vertical plate with variable temperature

2016 ◽  
Vol 13 (1) ◽  
pp. 101-110 ◽  
Author(s):  
P. K. Rout ◽  
S. N. Sahoo ◽  
G. C. Dash

An analysis has been carried out to study the effect of heat source and chemical reaction on MHD flow past a vertical plate subject to a constant motion with variable temperature and concentration. The governing equations are solved by the Laplace transformation technique. The effects of various flow parameters on the flow dynamics are discussed. Findings of the present study reveal that the velocity of the fluid reduces due to the dominating effect of kinematic viscosity over molecular diffusivity in case of heavier species. Presence of heat source reduces the velocity of the flow. Presence of chemical reaction parameter decreases the concentration distribution.

2013 ◽  
Vol 18 (3) ◽  
pp. 945-953
Author(s):  
R. Muthucumaraswamy ◽  
P. Balachandran ◽  
K. Ganesan

Abstract An exact solution of an unsteady radiative flow past a uniformly accelerated infinite vertical plate with variable temperature and mass diffusion is presented here, taking into account the homogeneous chemical reaction of first order. The plate temperature as well as concentration near the plate is raised linearly with time. The dimensionless governing equations are solved using the Laplace-transform technique. The velocity, temperature and concentration fields are studied for different physical parameters such as the thermal Grashof number, mass Grashof number, Schmidt number, Prandtl number, radiation parameter, chemical reaction parameter and time. It is observed that the velocity increases with increasing values of the thermal Grashof number or mass Grashof number. But the trend is just reversed with respect to the thermal radiation parameter. It is also observed that the velocity increases with the decreasing chemical reaction parameter


2014 ◽  
Vol 19 (2) ◽  
pp. 275-284
Author(s):  
R. Muthucumaraswamy ◽  
S. Velmurugan

Abstract An exact solution of an unsteady flow past a parabolic starting motion of an infinite vertical plate with variable temperature and mass diffusion, in the presence of a homogeneous chemical reaction of first order has been studied. The plate temperature as well as concentration level near the plate are raised linearly with time t. The dimensionless governing equations are solved using the Laplace-transform technique. The effects of velocity profiles are studied for different physical parameters such as the chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number and time. It is observed that the velocity increases with increasing values of the thermal Grashof number or mass Grashof number. The trend is just reversed with respect to the chemical reaction parameter.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Arpita Jain

This paper presents an analysis of combined heat and mass transfer flow past an oscillating vertical plate under the action of radiation effects and chemical reaction when heat is supplied to the plate at constant rate. The governing equations are solved in closed form by Laplace-transform technique. The results are obtained for temperature, concentration, velocity, skin friction, Nusselt number, and Sherwood number. The effects of various parameters on flow variables are illustrated graphically, and the physical aspects of the problem are discussed.


2008 ◽  
Vol 35 (4) ◽  
pp. 323-331 ◽  
Author(s):  
R. Muthucumaraswamy ◽  
K.E. Sathappan ◽  
R. Natarajan

An exact solution to the problem of flow past an exponentially accelerated infinite vertical plate with variable temperature is analyzed. The temperature of the plate is raised linearly with time t. The dimensionless governing equations are solved using Laplace-transform technique. The velocity and temperature profiles are studied for different physical parameters like thermal Grashof number Gr, time and an accelerating parameter a. It is observed that the velocity increases with increasing values of a or Gr.


2013 ◽  
Vol 8 (1) ◽  
pp. 721-729
Author(s):  
Ruchi Chaturvedi ◽  
Dr.R.K. Shrivatav ◽  
Dr.Mohd Salim Ahemad

In this paper we have studied and discussed the problem of unsteady flow of a visco-elastic (walter’s liquid model B) fluid through porous medium in presence of a heat source and a uniform magnetic field with effect of chemical reaction parameter. The effect of chemical reaction parameter g, porous parameter K and magnetic parameter on fluid velocity, temperature and concentration with respect to vertical axis Y and time t are discussed graphically.


2016 ◽  
Vol 21 (1) ◽  
pp. 95-105 ◽  
Author(s):  
R. Muthucumaraswamy ◽  
P. Sivakumar

Abstract The problem of MHD free convection flow with a parabolic starting motion of an infinite isothermal vertical plate in the presence of thermal radiation and chemical reaction has been examined in detail in this paper. The fluid considered here is a gray, absorbing emitting radiation but a non-scattering medium. The dimensionless governing coupled linear partial differential equations are solved using the Laplace transform technique. A parametric study is performed to illustrate the influence of the radiation parameter, magnetic parameter, chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number and time on the velocity, temperature, concentration. The results are discussed graphically and qualitatively. The numerical results reveal that the radiation induces a rise in both the velocity and temperature, and a decrease in the concentration. The model finds applications in solar energy collection systems, geophysics and astrophysics, aerospace and also in the design of high temperature chemical process systems.


Sign in / Sign up

Export Citation Format

Share Document