scholarly journals EFFECT OF CHEMICAL REACTION ON MHD FLOW OF A VISCO-ELASTIC (WALTER'S LIQUID MODEL-B) FLUID THROUGH POROUS MEDIUM WITH HEAT SOURCE

2013 ◽  
Vol 8 (1) ◽  
pp. 721-729
Author(s):  
Ruchi Chaturvedi ◽  
Dr.R.K. Shrivatav ◽  
Dr.Mohd Salim Ahemad

In this paper we have studied and discussed the problem of unsteady flow of a visco-elastic (walter’s liquid model B) fluid through porous medium in presence of a heat source and a uniform magnetic field with effect of chemical reaction parameter. The effect of chemical reaction parameter g, porous parameter K and magnetic parameter on fluid velocity, temperature and concentration with respect to vertical axis Y and time t are discussed graphically.

2018 ◽  
Vol 14 (5) ◽  
pp. 1101-1114 ◽  
Author(s):  
K. Suneetha ◽  
S.M. Ibrahim ◽  
G.V. Ramana Reddy

Purpose The purpose of this paper is to investigate the steady 2D buoyancy effects on MHD flow over a permeable stretching sheet through porous medium in the presence of suction/injection. Design/methodology/approach Similarity transformations are employed to transform the governing partial differential equations into ordinary differential equations. The transformed equations are then solved numerically by a shooting technique. Findings The working fluid is examined for several sundry parameters graphically and in tabular form. It is observed that with an increase in magnetic field and permeability of porous parameter, velocity profile decreases while temperature and concentration enhances. Stretching sheet parameter reduces velocity, temperature and concentration, whereas it increases skin friction factor, Nusselt number and Sherwood number. Originality/value Till now no numerical studies are reported on the effects of heat source and thermal radiation on MHD flow over a permeable stretching sheet embedded in porous medium in the presence of chemical reaction.


2016 ◽  
Vol 13 (1) ◽  
pp. 101-110 ◽  
Author(s):  
P. K. Rout ◽  
S. N. Sahoo ◽  
G. C. Dash

An analysis has been carried out to study the effect of heat source and chemical reaction on MHD flow past a vertical plate subject to a constant motion with variable temperature and concentration. The governing equations are solved by the Laplace transformation technique. The effects of various flow parameters on the flow dynamics are discussed. Findings of the present study reveal that the velocity of the fluid reduces due to the dominating effect of kinematic viscosity over molecular diffusivity in case of heavier species. Presence of heat source reduces the velocity of the flow. Presence of chemical reaction parameter decreases the concentration distribution.


2016 ◽  
Vol 8 (1) ◽  
pp. 41-48 ◽  
Author(s):  
M. S. Alam ◽  
M. Ali ◽  
M. A. Alim

The present problem is focused on the free convection heat and mass transfer flow of an electrically conducting incompressible viscous fluid about a semi-infinite vertical plate by the effect of chemical reaction and magnetic field under the action of heat absorption and variable Prandtl nnumber. The governing partial differential equations are transformed to ordinary differential equation by applying local similarity transformation. Then the dimensionless ordinary differential equations are solved using shooting iteration technique along with Runge-Kutta integration scheme. The effects of magnetic parameter and chemical reaction parameter with variable Prandtl number on velocity, temperature and concentration profiles are discussed numerically and shown graphically. Therefore, the results of velocity field decreases for increasing values of magnetic parameter and chemical reaction parameter in both air and salt water. The temperature field decreases in the presence of magnetic parameter but increases for chemical reaction parameter in case of air and salt water. Also, the concentration profile is slightly increased for increasing the values of magnetic parameter but significant decreasing effect are observed for reaction parameter. Finally, the numerical values of the shear stress, rate of temperature and rate of concentration are also shown in a tabular form.


2012 ◽  
Vol 18 (2) ◽  
pp. 305-314 ◽  
Author(s):  
R. Muthuraj ◽  
S. Srinivas ◽  
Lourdu Immaculate

A mathematical model is developed to examine the effect of chemical reaction on MHD mixed convective heat and mass transfer flow of a couple-stress fluid in vertical porous space in the presence of temperature dependent heat source with travelling thermal waves. The dimensionless governing equations are assumed to be made up of two parts: a mean part corresponding to the fully developed mean flow, and a small perturbed part, using amplitude as a small parameter. The analytical solution of perturbed part have been carried out by using the long-wave approximation. The expressions for the zeroth-order and the first order solutions are obtained and the results of the heat and mass transfer characteristics are presented graphically for various values of parameters entering into the problem. It is noted that velocity of the fluid increases with the increase of the couple stress parameter and increasing the chemical reaction parameter leads suppress the velocity of the fluid. Cross velocity decreases with an increase of the phase angle. The increase of the chemical reaction parameter and Schmidt number lead to decrease the fluid concentration. The hydrodynamic case for a non-porous space in the absence of the temperature dependent heat source for Newtonian fluid can be captured as a limiting case of our analysis by taking, and ?1?0, Da??, a??.


2011 ◽  
Vol 3 (7) ◽  
pp. 455-459
Author(s):  
N . Senapati N . Senapati ◽  
◽  
R. K. Dhal R. K. Dhal ◽  
K. Ray K. Ray

Sign in / Sign up

Export Citation Format

Share Document