scholarly journals Synthesis and Antimicrobial Screening of the Metal Complexes with Cyanex 302

2009 ◽  
Vol 1 (3) ◽  
pp. 647-654
Author(s):  
M. A. Alam ◽  
T. K. Pal

The synthesis and characterization of metal complexes of the Cyanex 302 [bis(2, 4, 4-trimethylpentyl) monothiophosphinic acid] are reported. The complexes have been characterized by elemental analyses, molar conductivity, molecular mass determination and magnetic measurements, infrared and electronic spectral studies. The antibacterial and antifungal activities of the ligand and metal complexes have also been investigated. They have the stoichiometry of the type 1. [MgL2].H2O, 2. [Ca L2].H2O, 3. [ZrOL2].H2O, 4. [FeL3] and 5. [NiL2]. Electronic spectral data and the magnetic moment values suggested the complexes 1 and 2 are tetrahedral geometry, while the complexes 3, 4 and 5 are square pyramidal, octahedral and square planar geometry around the central metal ions, respectively. Besides, magnetic susceptibility measurements of the complexes also revealed that complexes 1-3 and 5 are diamagnetic in nature, except complex 4, which is paramagnetic. The metal complexes showed stronger antibacterial and antifungal activities than the ligand.  Keywords: Antibacterial, antifungal; Bis(2, 4, 4-trimethylpentyl) mothiophosphinic acid; Cyanex 302. © 2009 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. DOI: 10.3329/jsr.v1i3.2259              J. Sci. Res. 1 (3), 647-654 (2009) 

1970 ◽  
Vol 34 (2) ◽  
pp. 153-161 ◽  
Author(s):  
Tarun Kumar Pal ◽  
Md Ashraful Alam ◽  
Suchitra Rani Paul

New metal complexes of Mg(II), VO(II), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Pd(II) with cyanex 301(L) i.e., bis(2,4,4-trimethylpentyl) dithiophosphinic acid were synthesized. The complexes have been characterized by elemental analysis, molar conductivity, molecular mass determination, magnetic measurements, infrared and electronic spectral studies. The prepared metal complexes have the compositions: 2. [MgL2].H2O, 3. [VOL2], 4. K[MnL3].H2O, 5. [FeL3], 6. K[CoL3].H2O, 7. K[NiL3], 8. K[CuL3] and 9. [PdL2]. The complexes 2, 3 and 9 are assumed to have tetrahedral, square pyramidal and square planar geometries, respectively but the complexes 4 - 8 are octahedral based on experimental data. From magnetic measurements the complexes 2 and 9 are found to be diamagnetic and others are paramagnetic. Measured molar conductance showed that the complexes 2, 3, 5 and 9 are non-electrolytes and rest are electrolytes. Besides, some complexes have shown good antibacterial and antifungal activities. Key words: Cyanex 301; Antibacterial; Antifungal; DMSO; Bis (2, 4, 4-trimethylpentyl) dithiophosphinic acid DOI: 10.3329/jbas.v34i2.6859Journal of Bangladesh Academy of Sciences, Vol. 34, No. 2, 153-161, 2010


2021 ◽  
Vol 43 (5) ◽  
pp. 578-578
Author(s):  
Khalil Ahmad Khalil Ahmad ◽  
Habib ur Rehman Shah Habib ur Rehman Shah ◽  
Areeba Ashfaq Areeba Ashfaq ◽  
Muhammad Ashfaq Muhammad Ashfaq ◽  
Muhammad Kashif Muhammad Kashif ◽  
...  

In this study, In Vitro antibacterial and antifungal activities of azo series based on transition metal complexes (Cu2+, Zn2+, Mn2+, Co2+ and Ni2+) with already our reported ligands named as; [(E)-1-(1, 3-dioxolan-2-yl)-2-phenyldiazene] (K-1), [(E)-1-(1, 3-dioxolan-2-yl)-2-(4-methylphenyl)diazene] (K-2), 2-[(E)-phenyl diazenyl]-1H-benzimidazole] (K-3), [(E)-1-(1, 3-dioxolan-2-yl)-2-(4-ethylphenyl)diazene] (K-4), and [(E)-1-(1, 3-dioxolan-2-yl)-2-(2-methylphenyl)-diazene] (K-5) were studied. FTIR 1H-NMR and mass spectrometric techniques were applied for interpretation of synthesized complexes. 4.05-4.07 ppm chemical shift appearance of azo group confirms azo coupling with transition metal complexes. N=N, C-H, C-N and C-O groups are also confirmed by FTIR which exhibited peaks at 1400-1500, 2090-3090, 1100-1180, 1010-1060 and 625-780 cm-1. Furthermore, mass spectroscopic data also gives strong indication for the synthesis of metal complexes. All the newly synthesized complexes were screened for their antibacterial and antifungal activities. Antibacterial and antifungal activity against S. aureus, E.coli and A.niger, A.ustus and C.albican at conc. 250 and#181;g/ml showed excellent activity by K-1 complexes (Co2+, Cu2+, Ni2+), K-5 complexes (Zn2+, Mn2+, Cu2+), K-2 complexes (Co2+, Cu2+, Mn2+) and K-3 (Zn2+, Mn2+, Co2+, Cu2+) as compared to standard drug (Ampicillin). Hence, based on this study, it was concluded that these azo based complexes may act as a platform for designing more active antibacterial and antifungal agents.


1970 ◽  
Vol 46 (3) ◽  
pp. 365-368 ◽  
Author(s):  
MA Akbor ◽  
MS Islam ◽  
N Akhter ◽  
S Ahmed ◽  
S Siraj

Mixed ligand (diphenic/ adipic as primary Ligand and quinoline / 8 - hydroxyquinoline as secondary) transition metal complexes of Cobalt (II), Cupper (II), Rhodium (III) and Platinum (IV) ions were synthesized and characterized. Their antibacterial activities against ten bacteria had been evaluated by the disc diffusion method,whilst their antifungal activities against two fungi had been also evaluated by the same method. Minimum inhibitory concentrations (MIC) had been evaluated against six bacteria. The MIC of the complexes against Shigella dysenteriae, Samonella typhi, Streptococcus-β-haemolyticus and Bacillus megaterium were 32 μg/ml; whilst Escherichia coli and Samonella typhi-A the MIC of Co (II) and Pt (IV) were 32μg/ml and those of Cu(II) and Rh(III) complexes were 64 μg/ml. It was found that Cobalt (II), Cupper (II) & Rhodium (III) complexes had pronounced antibacterial and antifungal activities. Platinum (IV) complex had moderate antibacterial and antifungal activity. These values indicate that these are active compounds. Key words: Mixed Ligand; Transition metal; Antimicrobial Activity; Antifungal Activity Minimum Inhibitory Concentrations (MIC) DOI: http://dx.doi.org/10.3329/bjsir.v46i3.9044 BJSIR 2011; 46(3): 365-368


Author(s):  
Sarkar M.A. Kawsar ◽  
Khaleda Mymona ◽  
Refat Asma ◽  
Mohammad A. Manchur ◽  
Yasuhiro Koide ◽  
...  

This study was carried out to regioselective myristoylation of methyl α-D-glucopyranoside (1) using the direct acylation method gave the corresponding methyl 6-O-myristoyl-α-D-glucopyranoside (2) in fair yield. A number of 2,3,4-tri-O-acyl derivatives (3-15) of this 6-O-substitution product using a wide variety of acylating agents were also prepared in order to obtain newer derivatives of synthetic and biological importance. The reaction conditions are reasonably simple and yields were very good. The structures of the title compounds (2-15) were established by using analytical, physicochemical techniques and spectroscopic data (IR and 1H-NMR). All the synthesized compounds were employed as test chemicals for in vitro antimicrobial functionality test against Gram-positive Bacillus subtilis, Staphylococcus aureus, Gram-negative Escherichia coli, Pseudomonas aeruginosa bacteria and plant pathogenic fungi Aspergillus niger and Candida albicans. For comparative studies, antimicrobial activity of standard antibiotics, Ampicillin and Nystatin were also carried out against these microorganisms. The study revealed that the tested samples exhibited moderate to good antibacterial and antifungal activities. It was also observed that the test substances were more effective against fungal phytopathogens than those of the human bacterial strains. Encouragingly, a number of tested chemicals showed nearest antibacterial and antifungal activities with the standard antibiotics employed.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Namratha Bhandari ◽  
Santosh L. Gaonkar

The paper describes a convenient method for the preparation of 4-substituted phenyl-5-[1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-yl]-2H-1,2,4-triazole-3-thiones. The structures of the synthesized compounds are established by the results of LCMS, 1H NMR, 13C NMR, and IR and elemental analyses. The mercaptotriazoles are indicated to be in thione form by 1H NMR spectra. All the synthesized compounds have been screened for antibacterial and antifungal activities. Compounds 12d and 12h exhibit encouraging results, while the remaining compounds show moderate activities. On the basis of spectral studies, formation of 2-amino-1,3,4-thiadiazoles from the isobenzofuran acyl thiosemicarbazides 11(a–h) is ruled out.


2010 ◽  
Vol 10 (3) ◽  
pp. 382-389
Author(s):  
Suman Malik ◽  
Supriya Das ◽  
Bharti Jain

Omeprazole (OME) is a proton pump inhibitor (PPI). PPIs have enabled to improve the treatment of various acid-peptic disorders. OME is a weak base and it can form several complexes with transition and non-transition metal ions. In the present paper, we are describing series of transition metal complexes of omeprazole i.e., 5-methoxy-2[(4methoxy-3, 5dimethyl-2-pyridinyl) methylsulfinyl]-1H-benzimidazole with CuII, MnII, CoII, NiII, FeII, ZnII and HgII. These complexes were characterized by elemental analysis, molar conductivity, IR, NMR, magnetic susceptibility, UV-visible spectral studies, ESR, SEM and X-ray diffraction. Based on the above studies, the ligand behaves as bidentate O, N donor and forms coordinate bonds through C=N and S=O groups. The complexes were found to non-electrolytic in nature on the basis of low values of molar conductivity. Analytical data and stoichiometry analysis suggest ligand to metal ratio of 2:1 for all the complexes. Electronic spectra and magnetic susceptibility measurements reveal octahedral geometry for Mn(II),Co(II), Ni(II),Fe(II) and Cu(II) complexes and tetrahedral for Hg(II) and Zn(II) complexes. Ligands and their metal complexes have been screened for their antibacterial and antifungal activities against bacteria Pseudomonas, Staphylococcus aureus and fungi Aspergillus niger and A. flavous.


Author(s):  
Mallikarjun S. Yadawe ◽  
Shrishila N. Unki ◽  
Sangamesh A. Patil

Some lanthanum(III) complexes have been synthesized by reacting lanthanum(III) metal salt with Schiff bases derived from 3-substituted-4-amino-5-mercapto-1,2,4-triazole and glyoxal/biacetyl/benzyl. All these complexes are not soluble in common organic solvents. However sparingly soluble in DMF and DMSO. The chemical analysis of the complexes confirmed to the stoichiometry of the type La(III)LNO3·H2O. La(III)LCl·H2O and La(III)LNCS·H2O respectively. The chelation of the complexes has been proposed in the light of analytical, spectral studies. The measured molar conductance values indicate that, the complexes are non-electrolytes. The Schiff bases and their complexes have been screened for their antibacterial and antifungal activities. The results of these studies show the metal complexes to be more antibacterial and antifungal as compared to the uncomplexed coumarins.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
R. B. Sumathi ◽  
M. B. Halli

A new Schiff base and a new series of Co(II), Ni(II), Cu(II), Cd(II), and Hg(II) complexes were synthesized by the condensation of naphthofuran-2-carbohydrazide and diacetylmonoxime. Metal complexes of the Schiff base were prepared from their chloride salts of Co(II), Ni(II), Cu(II), Cd(II), and Hg(II) in ethanol. The ligand along with its metal complexes have been characterized on the basis of analytical data, IR, electronic, mass,1HNMR, ESR spectral data, thermal studies, magnetic susceptibility, and molar conductance measurements. The nonelectrolytic behaviour of the complexes was assessed from the measured low conductance data. The elemental analysis of the complexes confirm the stoichiometry of the type CuL2Cl2and MLCl2where M = Ni(II), Co(II), Cd(II), and Hg(II) and L = Schiff base. The redox property of the Cu(II) complex was investigated by electrochemical method using cyclic voltammetry. In the light of these results, Co(II), Ni(II), and Cu(II) complexes are assigned octahedral geometry, Cd(II), and Hg(II) complexes tetrahedral geometry. In order to evaluate the effect of metal ions upon chelation, both the ligand and its metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleaving capacity of all the complexes was analysed by agarose gel electrophoresis method.


2020 ◽  
Vol 32 (5) ◽  
pp. 1091-1096
Author(s):  
Netra Pal Singh ◽  
Uma Agarwal ◽  
Anuroop Kumar ◽  
Kaushal Kumar

A new Schiff base ligand (L) [2,2′-((1Z,1′Z)-((4-methyl-1,2- phenylene)bis(azanylidene))bis(methanylylidene))diphenol], derived from condensation of salicyaldehyde and 3,4-diamino toluene. The synthesized ligand was used for complexation with different metal ions Cr(III), Co(II), Zn(II) and Cd(II) using a molar ratio of metal:ligand (1:1). The synthesized ligand and its metal complexes were characterized by TLC, NMR (1H & 13C), UV-visible, mass, FT-IR spectroscopies, elemental analysis, magnetic moment and conductivity measurement. On the basis of above studies the proposed structure of synthesized mononuclear metal complexes have been found to possess tetrahedral geometry while Cr(III) and Co(II) ions possess octahedral geometry. The spectral studies revealed that the synthesized ligand was acting as tetradentate chelating agent and coordinated to metal centre via deprotonated phenolate oxygen and azomethine-N atom. The biological activity of ligand and its metal complexes were screened in vitro against Gram-negative bacteria (Salmonella typhimurium and E. coli), Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) and fungus (Aspergillus fumigatus) to ascertain their antibacterial and antifungal properties.


Sign in / Sign up

Export Citation Format

Share Document