scholarly journals Metal (II) Complexes Derived from Naphthofuran-2-carbohydrazide and Diacetylmonoxime Schiff Base: Synthesis, Spectroscopic, Electrochemical, and Biological Investigation

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
R. B. Sumathi ◽  
M. B. Halli

A new Schiff base and a new series of Co(II), Ni(II), Cu(II), Cd(II), and Hg(II) complexes were synthesized by the condensation of naphthofuran-2-carbohydrazide and diacetylmonoxime. Metal complexes of the Schiff base were prepared from their chloride salts of Co(II), Ni(II), Cu(II), Cd(II), and Hg(II) in ethanol. The ligand along with its metal complexes have been characterized on the basis of analytical data, IR, electronic, mass,1HNMR, ESR spectral data, thermal studies, magnetic susceptibility, and molar conductance measurements. The nonelectrolytic behaviour of the complexes was assessed from the measured low conductance data. The elemental analysis of the complexes confirm the stoichiometry of the type CuL2Cl2and MLCl2where M = Ni(II), Co(II), Cd(II), and Hg(II) and L = Schiff base. The redox property of the Cu(II) complex was investigated by electrochemical method using cyclic voltammetry. In the light of these results, Co(II), Ni(II), and Cu(II) complexes are assigned octahedral geometry, Cd(II), and Hg(II) complexes tetrahedral geometry. In order to evaluate the effect of metal ions upon chelation, both the ligand and its metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleaving capacity of all the complexes was analysed by agarose gel electrophoresis method.

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Har Lal Singh ◽  
J. B. Singh

New Schiff base (HL) ligand is prepared via condensation of isatins and amino acids in 1:1 molar ratio. Metal complexes are prepared and characterized by elemental analysis, molar conductance, electronic, infrared, and multinuclear magnetic resonance (1H NMR, 13C NMR, and 119Sn NMR). The analytical data showed that the ligand acts as bidentate toward metal ions via azomethine nitrogen and carboxylate oxygen by a stoichiometric reaction of metal : ligand (1 : 2) to from metal complexes (Pb(II)(L)2 and Bu2Sn(L)2, where L is the Schiff base ligands of histidine and methionine). The conductivity values between 15 and 25 Ω−1cm2 mol−1 in DMF imply the presence of nonelectrolyte species. On the basis of the above spectral studies, distorted octahedral and tetrahedral geometry have been proposed for the resulting organotin(IV) and lead(II) complexes.


2018 ◽  
Vol 7 (4.37) ◽  
pp. 198
Author(s):  
Ahmed Razzaq Ibrahim Al-Faris ◽  
Wafaa Mahdi Sachit Alkoofee ◽  
. .

Metal complexes of the Schiff base ligand, synthesized via condensation p-dimethylamino benzaldehyde with Bis (4-aminoantipyrine) benzene 1, 4-diamine which has synthesized from condensation 1, 4-phenylene diamine and 4-aminoantipyrine, are synthesized from chloride salts of Co (II) and Ni(II) with ligand in ethanol. The metal complexes and ligand are characterized on the basis of elemental analyses, melting point, molar conductance, UV –Visible, FTIR and thermogravimetric analysis. The molar conductance data reveal that the metal chelates of the ligand with Co (II) and Ni (II) are electrolytes. The present results suggested that the Schiff base ligand as tetradentate is coordinated with metal ions through the four nitrogen atoms. 


2017 ◽  
Vol 36 (3) ◽  
pp. 31 ◽  
Author(s):  
Suman Malik ◽  
Supriya Das ◽  
Bharti Jain

Omeprazole (OME) is a proton pump inhibitor (PPI). PPI’s have enabled to improve the treatment of various acidpeptic disorders. OME is a weak base and it can form several complexes with transition and non-transitions metal ions. In the present paper, we are describing series of trantion metal complexes of omeprazole i.e.,5-methoxy-2[(4methoxy-3,5dimethyl-2-pyridinyl)methylsulfinyl]–1H–benzimidazole with CuII, MnII, CoII, NiII, FeII, ZnII and HgII. These complexes were characterized by elemental analysis, molar conductance, IR, NMR, magnetic susceptibility, UV-visible spectral studies, ESR, SEM and X-ray diffraction. Based on the above studies, the ligand behaves as bidentate O, N donor and forms coordinate bonds through C=N and S=O groups .The complexes were found to non-electrolytic in nature on the basis of low values of molar conductance . Analytical data and stochiometry suggest ligand metal ratio of 2:1 for all the complexes. Electronic Spectra and Magnetic susceptibility measurements reveal octahedral geometry for Mn(II),Co(II), Ni(II),Fe(II) and Cu(II) complexes and tetrahedral for Hg(II) and Zn(II) complexes. Ligands and their metal complexes have been screened for their antibacterial and antifungal activities against bacteria Pseudomonas, Staphylococcus Aureus and fungi Aspergillus niger and A. flavous.


2009 ◽  
Vol 6 (3) ◽  
pp. 615-624 ◽  
Author(s):  
K. Siddappa ◽  
K. Mallikarjun ◽  
Tukaram Reddy ◽  
M. Mallikarjun ◽  
C. V. Reddy ◽  
...  

A new complexes of the type ML, MʹL and M″L [where M=Cu(II), Co(II), Ni(II) and Mn(II), Mʹ=Fe(III) and M″=Zn(II), Cd(II) and Hg(II) and L=N1-[(1E)-1-(2-hydroxyphenyl)ethylidene]-2-oxo-2H-chromene- 3-carbohydrazide (HL)] Schiff base have been synthesized and characterized by elemental analysis, magnetic susceptibility, molar conductance, IR,1H NMR, UV-Visible and ESR data. The studies indicate the HL acts as doubly monodentate bridge for metal ions and form mononuclear complexes. The complexes Ni(II), Co(II), Cu(II) Mn(II) and Fe(III) complexes are found to be octahedral, where as Zn(II), Cd(II) and Hg(II) complexes are four coordinated with tetrahedral geometry. The synthesized ligand and its metal complexes were screened for their antimicrobial activity.


1970 ◽  
Vol 34 (2) ◽  
pp. 153-161 ◽  
Author(s):  
Tarun Kumar Pal ◽  
Md Ashraful Alam ◽  
Suchitra Rani Paul

New metal complexes of Mg(II), VO(II), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Pd(II) with cyanex 301(L) i.e., bis(2,4,4-trimethylpentyl) dithiophosphinic acid were synthesized. The complexes have been characterized by elemental analysis, molar conductivity, molecular mass determination, magnetic measurements, infrared and electronic spectral studies. The prepared metal complexes have the compositions: 2. [MgL2].H2O, 3. [VOL2], 4. K[MnL3].H2O, 5. [FeL3], 6. K[CoL3].H2O, 7. K[NiL3], 8. K[CuL3] and 9. [PdL2]. The complexes 2, 3 and 9 are assumed to have tetrahedral, square pyramidal and square planar geometries, respectively but the complexes 4 - 8 are octahedral based on experimental data. From magnetic measurements the complexes 2 and 9 are found to be diamagnetic and others are paramagnetic. Measured molar conductance showed that the complexes 2, 3, 5 and 9 are non-electrolytes and rest are electrolytes. Besides, some complexes have shown good antibacterial and antifungal activities. Key words: Cyanex 301; Antibacterial; Antifungal; DMSO; Bis (2, 4, 4-trimethylpentyl) dithiophosphinic acid DOI: 10.3329/jbas.v34i2.6859Journal of Bangladesh Academy of Sciences, Vol. 34, No. 2, 153-161, 2010


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Narendra Kumar Chaudhary ◽  
Parashuram Mishra

A novel Schiff base ligand of type HL was prepared by the condensation of amoxicillin trihydrate and nicotinaldehyde. The metal complexes of Co+2, Ni+2, Cu+2, and Zn+2 were characterized and investigated by physical and spectral techniques, namely, elemental analysis, melting point, conductivity, 1H NMR, IR, UV-Vis spectra, ESR, SEM, and mass spectrometry measurements. They were further analyzed by thermal technique (TGA/DTA) to gain better insight about the thermal stability and kinetic properties of the complexes. Thermal data revealed high thermal stability and nonspontaneous nature of the decomposition steps. The Coats-Redfern method was applied to extract thermodynamic parameters to explain the kinetic behavior. The molar conductance values were relatively low, showing their nonelectrolytic nature. The powder XRD pattern revealed amorphous nature except copper complex (1c) that crystallized in the triclinic crystal system. The EPR study strongly recommends the tetrahedral geometry of 1c. The structure optimization by MM force field calculation through ArgusLab 4.0.1 software program supports the concerned geometry of the complexes. The in vitro antibacterial activity of all the compounds, at their two different concentrations, was screened against four bacterial pathogens, namely, E. coli, P. vulgaris, K. pneumoniae, and S. aureus, and showed better activity compared to parent drug and control drug.


2012 ◽  
Vol 9 (4) ◽  
pp. 1655-1666 ◽  
Author(s):  
A. P. Mishra ◽  
H. Purwar ◽  
Rajendra K. Jain ◽  
S. K. Gupta

Some new Schiff base metal complexes of Co(II), Ni(II) and Cu(II) derived from 4-chlorobenzylidene-2-aminothiazole (CAT) and 2-nitrobenzylidene-2-aminothiazole (NAT) have been synthesized by conventional as well as microwave methods. These compounds have been characterized by elemental analysis, FT-IR, FAB-mass, molar conductance, electronic spectra, ESR, magnetic susceptibility, thermal, electrical conductivity and XRD analysis. The complexes are coloured and stable in air. Analytical data revealed that all the complexes exhibited 1:2 (metal:ligand) ratio with coordination number 4 or 6. FAB-mass and thermal data show degradation pattern of the complexes. The thermal behavior of metal complexes shows that the hydrated complexes loses water molecules of hydration in the first step; followed by decomposition of ligand molecules in the subsequent steps. The crystal system, lattice parameter, unit cell volume and number of molecules in unit cell in the lattice of complexes have been determined by XRD analysis. XRD patterns indicate crystalline nature for the complexes. The solid state electrical conductivity of the metal complexes has also been measured. Solid state electrical conductivity studies reflect semiconducting nature of the complexes. The Schiff base and metal complexes show a good activity against the Gram-positive bacteria;Staphylococcus aureusand Gram-negative bacteria;Escherichia coliand fungiAspergillus nigerandCandida albicans.


2010 ◽  
Vol 10 (3) ◽  
pp. 382-389
Author(s):  
Suman Malik ◽  
Supriya Das ◽  
Bharti Jain

Omeprazole (OME) is a proton pump inhibitor (PPI). PPIs have enabled to improve the treatment of various acid-peptic disorders. OME is a weak base and it can form several complexes with transition and non-transition metal ions. In the present paper, we are describing series of transition metal complexes of omeprazole i.e., 5-methoxy-2[(4methoxy-3, 5dimethyl-2-pyridinyl) methylsulfinyl]-1H-benzimidazole with CuII, MnII, CoII, NiII, FeII, ZnII and HgII. These complexes were characterized by elemental analysis, molar conductivity, IR, NMR, magnetic susceptibility, UV-visible spectral studies, ESR, SEM and X-ray diffraction. Based on the above studies, the ligand behaves as bidentate O, N donor and forms coordinate bonds through C=N and S=O groups. The complexes were found to non-electrolytic in nature on the basis of low values of molar conductivity. Analytical data and stoichiometry analysis suggest ligand to metal ratio of 2:1 for all the complexes. Electronic spectra and magnetic susceptibility measurements reveal octahedral geometry for Mn(II),Co(II), Ni(II),Fe(II) and Cu(II) complexes and tetrahedral for Hg(II) and Zn(II) complexes. Ligands and their metal complexes have been screened for their antibacterial and antifungal activities against bacteria Pseudomonas, Staphylococcus aureus and fungi Aspergillus niger and A. flavous.


Author(s):  
Mallikarjun S. Yadawe ◽  
Shrishila N. Unki ◽  
Sangamesh A. Patil

Some lanthanum(III) complexes have been synthesized by reacting lanthanum(III) metal salt with Schiff bases derived from 3-substituted-4-amino-5-mercapto-1,2,4-triazole and glyoxal/biacetyl/benzyl. All these complexes are not soluble in common organic solvents. However sparingly soluble in DMF and DMSO. The chemical analysis of the complexes confirmed to the stoichiometry of the type La(III)LNO3·H2O. La(III)LCl·H2O and La(III)LNCS·H2O respectively. The chelation of the complexes has been proposed in the light of analytical, spectral studies. The measured molar conductance values indicate that, the complexes are non-electrolytes. The Schiff bases and their complexes have been screened for their antibacterial and antifungal activities. The results of these studies show the metal complexes to be more antibacterial and antifungal as compared to the uncomplexed coumarins.


Sign in / Sign up

Export Citation Format

Share Document