scholarly journals Physico-chemical characterization and biological screening of metal complexes with Cyanex 301

1970 ◽  
Vol 34 (2) ◽  
pp. 153-161 ◽  
Author(s):  
Tarun Kumar Pal ◽  
Md Ashraful Alam ◽  
Suchitra Rani Paul

New metal complexes of Mg(II), VO(II), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Pd(II) with cyanex 301(L) i.e., bis(2,4,4-trimethylpentyl) dithiophosphinic acid were synthesized. The complexes have been characterized by elemental analysis, molar conductivity, molecular mass determination, magnetic measurements, infrared and electronic spectral studies. The prepared metal complexes have the compositions: 2. [MgL2].H2O, 3. [VOL2], 4. K[MnL3].H2O, 5. [FeL3], 6. K[CoL3].H2O, 7. K[NiL3], 8. K[CuL3] and 9. [PdL2]. The complexes 2, 3 and 9 are assumed to have tetrahedral, square pyramidal and square planar geometries, respectively but the complexes 4 - 8 are octahedral based on experimental data. From magnetic measurements the complexes 2 and 9 are found to be diamagnetic and others are paramagnetic. Measured molar conductance showed that the complexes 2, 3, 5 and 9 are non-electrolytes and rest are electrolytes. Besides, some complexes have shown good antibacterial and antifungal activities. Key words: Cyanex 301; Antibacterial; Antifungal; DMSO; Bis (2, 4, 4-trimethylpentyl) dithiophosphinic acid DOI: 10.3329/jbas.v34i2.6859Journal of Bangladesh Academy of Sciences, Vol. 34, No. 2, 153-161, 2010

2012 ◽  
Vol 4 (2) ◽  
pp. 427 ◽  
Author(s):  
T. K. Pal ◽  
M. A. Alam ◽  
M. A. A. A. A. Islam ◽  
S. R. Paul

Several new complexes of Cr(III), Mn(II), Fe(II), Co(II) and Cu(II) containing Cyanex 302 [bis(2,4,4-trimethylpentyl) monothiophosphinic acid] were synthesized and characterized by elemental analysis, molar conductance, molecular mass determination, magnetic, UV-Visible and IR studies. The prepared metal complexes has the compositions: 2. [CrL3].H2O, 3. K[MnL3].H2O, 4. [FeL2].H2O, 5. K[CoL3] and 6. K[CuL3].H2O (Where, L means anion of bis(2,4,4-trimethylpentyl) monothiophosphinic acid). The complexes 2, 3, 5 and 6 are assumed to have octahedral geometries, but the complex 4 is tetrahedral based on experimental data. From magnetic measurements all the complexes are found to be paramagnetic. Measured molar conductance showed that the complexes 2 and 4 are non-electrolytes and complexes 3, 5 and 6 are electrolytes. Besides, some metal complexes have shown very good antibacterial and antifungal activities.Keywords:  Bis(2,4,4-trimethylpentyl) monothiophosphinic acid; Biological activity.© 2012 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi: http://dx.doi.org/10.3329/jsr.v4i2.9366 J. Sci. Res. 4 (2), 427-435 (2012)


Author(s):  
Mallikarjun S. Yadawe ◽  
Shrishila N. Unki ◽  
Sangamesh A. Patil

Some lanthanum(III) complexes have been synthesized by reacting lanthanum(III) metal salt with Schiff bases derived from 3-substituted-4-amino-5-mercapto-1,2,4-triazole and glyoxal/biacetyl/benzyl. All these complexes are not soluble in common organic solvents. However sparingly soluble in DMF and DMSO. The chemical analysis of the complexes confirmed to the stoichiometry of the type La(III)LNO3·H2O. La(III)LCl·H2O and La(III)LNCS·H2O respectively. The chelation of the complexes has been proposed in the light of analytical, spectral studies. The measured molar conductance values indicate that, the complexes are non-electrolytes. The Schiff bases and their complexes have been screened for their antibacterial and antifungal activities. The results of these studies show the metal complexes to be more antibacterial and antifungal as compared to the uncomplexed coumarins.


2009 ◽  
Vol 1 (3) ◽  
pp. 647-654
Author(s):  
M. A. Alam ◽  
T. K. Pal

The synthesis and characterization of metal complexes of the Cyanex 302 [bis(2, 4, 4-trimethylpentyl) monothiophosphinic acid] are reported. The complexes have been characterized by elemental analyses, molar conductivity, molecular mass determination and magnetic measurements, infrared and electronic spectral studies. The antibacterial and antifungal activities of the ligand and metal complexes have also been investigated. They have the stoichiometry of the type 1. [MgL2].H2O, 2. [Ca L2].H2O, 3. [ZrOL2].H2O, 4. [FeL3] and 5. [NiL2]. Electronic spectral data and the magnetic moment values suggested the complexes 1 and 2 are tetrahedral geometry, while the complexes 3, 4 and 5 are square pyramidal, octahedral and square planar geometry around the central metal ions, respectively. Besides, magnetic susceptibility measurements of the complexes also revealed that complexes 1-3 and 5 are diamagnetic in nature, except complex 4, which is paramagnetic. The metal complexes showed stronger antibacterial and antifungal activities than the ligand.  Keywords: Antibacterial, antifungal; Bis(2, 4, 4-trimethylpentyl) mothiophosphinic acid; Cyanex 302. © 2009 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. DOI: 10.3329/jsr.v1i3.2259              J. Sci. Res. 1 (3), 647-654 (2009) 


2017 ◽  
Vol 36 (3) ◽  
pp. 31 ◽  
Author(s):  
Suman Malik ◽  
Supriya Das ◽  
Bharti Jain

Omeprazole (OME) is a proton pump inhibitor (PPI). PPI’s have enabled to improve the treatment of various acidpeptic disorders. OME is a weak base and it can form several complexes with transition and non-transitions metal ions. In the present paper, we are describing series of trantion metal complexes of omeprazole i.e.,5-methoxy-2[(4methoxy-3,5dimethyl-2-pyridinyl)methylsulfinyl]–1H–benzimidazole with CuII, MnII, CoII, NiII, FeII, ZnII and HgII. These complexes were characterized by elemental analysis, molar conductance, IR, NMR, magnetic susceptibility, UV-visible spectral studies, ESR, SEM and X-ray diffraction. Based on the above studies, the ligand behaves as bidentate O, N donor and forms coordinate bonds through C=N and S=O groups .The complexes were found to non-electrolytic in nature on the basis of low values of molar conductance . Analytical data and stochiometry suggest ligand metal ratio of 2:1 for all the complexes. Electronic Spectra and Magnetic susceptibility measurements reveal octahedral geometry for Mn(II),Co(II), Ni(II),Fe(II) and Cu(II) complexes and tetrahedral for Hg(II) and Zn(II) complexes. Ligands and their metal complexes have been screened for their antibacterial and antifungal activities against bacteria Pseudomonas, Staphylococcus Aureus and fungi Aspergillus niger and A. flavous.


2010 ◽  
Vol 10 (3) ◽  
pp. 382-389
Author(s):  
Suman Malik ◽  
Supriya Das ◽  
Bharti Jain

Omeprazole (OME) is a proton pump inhibitor (PPI). PPIs have enabled to improve the treatment of various acid-peptic disorders. OME is a weak base and it can form several complexes with transition and non-transition metal ions. In the present paper, we are describing series of transition metal complexes of omeprazole i.e., 5-methoxy-2[(4methoxy-3, 5dimethyl-2-pyridinyl) methylsulfinyl]-1H-benzimidazole with CuII, MnII, CoII, NiII, FeII, ZnII and HgII. These complexes were characterized by elemental analysis, molar conductivity, IR, NMR, magnetic susceptibility, UV-visible spectral studies, ESR, SEM and X-ray diffraction. Based on the above studies, the ligand behaves as bidentate O, N donor and forms coordinate bonds through C=N and S=O groups. The complexes were found to non-electrolytic in nature on the basis of low values of molar conductivity. Analytical data and stoichiometry analysis suggest ligand to metal ratio of 2:1 for all the complexes. Electronic spectra and magnetic susceptibility measurements reveal octahedral geometry for Mn(II),Co(II), Ni(II),Fe(II) and Cu(II) complexes and tetrahedral for Hg(II) and Zn(II) complexes. Ligands and their metal complexes have been screened for their antibacterial and antifungal activities against bacteria Pseudomonas, Staphylococcus aureus and fungi Aspergillus niger and A. flavous.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
R. B. Sumathi ◽  
M. B. Halli

A new Schiff base and a new series of Co(II), Ni(II), Cu(II), Cd(II), and Hg(II) complexes were synthesized by the condensation of naphthofuran-2-carbohydrazide and diacetylmonoxime. Metal complexes of the Schiff base were prepared from their chloride salts of Co(II), Ni(II), Cu(II), Cd(II), and Hg(II) in ethanol. The ligand along with its metal complexes have been characterized on the basis of analytical data, IR, electronic, mass,1HNMR, ESR spectral data, thermal studies, magnetic susceptibility, and molar conductance measurements. The nonelectrolytic behaviour of the complexes was assessed from the measured low conductance data. The elemental analysis of the complexes confirm the stoichiometry of the type CuL2Cl2and MLCl2where M = Ni(II), Co(II), Cd(II), and Hg(II) and L = Schiff base. The redox property of the Cu(II) complex was investigated by electrochemical method using cyclic voltammetry. In the light of these results, Co(II), Ni(II), and Cu(II) complexes are assigned octahedral geometry, Cd(II), and Hg(II) complexes tetrahedral geometry. In order to evaluate the effect of metal ions upon chelation, both the ligand and its metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleaving capacity of all the complexes was analysed by agarose gel electrophoresis method.


2019 ◽  
Vol 16 ◽  
pp. 6313-6324
Author(s):  
Hanaa A. El-Boraey ◽  
Aballah El-domiaty

Four novel Mn(II), Co(II), Cu(II) complexes with nitrogen containing ligand (L) i.e. N,N-((Z)-ethane-1,2-diylidine)bis(2-amino benzo hydrazide) have been synthesized and structurally characterized by elemental analysis, spectral, thermal (TG/DTG), molar conductance and magnetic susceptibility measurements. From the spectroscopic and magnetic studies it has been concluded that all complexes have a six coordinated octahedral geometry. The Schiff base and their metal complexes have also been screened for their antibacterial and antifungal activities by using a modified Kirby-Bauer disc diffusion method.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 700
Author(s):  
Bianca R. Albuquerque ◽  
Maria Inês Dias ◽  
Carla Pereira ◽  
Jovana Petrović ◽  
Marina Soković ◽  
...  

Fruit bio-residues can be interesting for the recovery of bioactive molecules, such as phenolic compounds, tocopherols, vitamins, among others. These compounds can be targeted at the food industry and used for the development of functional foods or as food additives. In some cases, fruit epicarps are converted into by-products with non-commercial value, and generally, these fruit parts have a higher content in bioactive compounds than the fruit pulp. From this perspective, S. odorifera, a Brazilian fruit, has an inedible epicarp that could be explored to obtain biological compounds. Therefore, the aims of this study were to evaluate the chemical composition and the antioxidant, anti-proliferative, anti-inflammatory, and antimicrobial bioactivities of this by-product. S. odorifera epicarp showed a total of four organic acids, four phenolic compounds, highlighting the high concentration of anthocyanins (24 ± 1 mg/g dry weight (dw)) and high content of tocopherols (366 ± 2 mg/100 g dw). The hydroethanolic extract showed considerable antioxidant activity (EC50 values of 48.2 ± 0.5 and 27 ± 1 µg/mL for TBARS and OxHLIA assays, respectively), as also antibacterial and antifungal activities (minimal inhibitory concentrations (MICs) ≤ 2.2 mg/mL). The results obtained in this study suggest that Sicana odorifera epicarp represents a reliable option for the development of novel natural-based colorants with functional/bioactive proprieties.


2007 ◽  
Vol 3 (3) ◽  
pp. 252-263
Author(s):  
Wesam Saber Shehab ◽  
Naglaa Z.H. Eleiwa ◽  
Samar.M. Mouneir

The present study was designed to synthesize  and develop new useful lead compounds (some novel benzazole and benzazine derivatives ) of simple structure , exhibiting optimal in vitro anticancer  and antimicrobial potency. Phenylenediamine derivative 1 was condensed  with  dithiocarboxylic acid derivatives 2 and produced   benzimidazole derivative 4. The benzotriazepines 8 and 10  were formed by the reaction of 1 with dicarbonyl derivatives followed by intermolecular coupling reaction. The synthesis of benzotriazine12, benzotriazole 14,17, benzimidazole16 and benzothiadiazine 19 from compound 1 was also described. The Synthesized Compounds were characterized by Spectral Studies like IR, H1 – NMR and Analysis Spectra .The title compounds were screened for their possible In vitro anticancer and antimicrobial activities. Among the synthesized compounds, some have shown promisingly remarkable activities against  different  cancer cell lines (MCF-7 human breast cancer cells, HepG2 human hepatocarcinoma cells and PC3 human prostate cancer cells)and moderate  to high antibacterial and antifungal activities. The obtained results showed that the most active compounds could be useful as a template for future design, modification and investigation to produce more active analogs.


Sign in / Sign up

Export Citation Format

Share Document