scholarly journals Effects of Cucumber Mosaic Virus on Cellular Components, Host Physiology and Yield of Chilli

2019 ◽  
Vol 29 (2) ◽  
pp. 219-230
Author(s):  
M. Siddiqur Rahman ◽  
K. Jahan ◽  
Ashfak Ahmed Sabuz ◽  
A.M. Akanda

Alteration of cellular components and host physiology due to five biotypes of Cucumber mosaic virus (CMV) were investigated to know the effects on ultimate growth and yield of chilli. Severe reduction of cellular components like chlorophyll-a (59.31%), chlorophyll-b (68.40%), total chlorophyll (63.20%) and β-carotene (51.14%) were observed in plant infected by mosaic and stunting (MoS) as compared to healthy plant. The ratio of RNA to DNA was increased in the infected leaves. The reduction of photosynthesis rate was found 6.32 to 17.10% in CMV infected plants as compared to healthy plants. Stomatal conductance and inter cellular CO2 was found lower in CMV infected plats. Considerable yield reduction (28.80 to 78.11%.) was found infected with five symptomatic isolate of CMV. The present findings indicate that multiplication of virus particles in the infected cells alter the biochemical compounds of cells that disrupt the physiological process which affect the growth and yield of chilli.

2012 ◽  
Vol 7 (2) ◽  
pp. 130-139
Author(s):  
Muhammad Taufik ◽  
Sri Hendrastuti Hidayat ◽  
Sriani Sujiprihati ◽  
Gede Suastika ◽  
Sientje Mandang Sumaraw

Resistance Evaluation of Chillipepper Cultivars for Cucumber Mosaic Virus and Chilli Veinal Mottle Virus.  The use of resistance culivars is an important strategy for management of virus infection in chillipepper. A research was undergone to study the effect of single and mix infection of CMV and ChiVMV on the disease incidence and on the growth and yield of nine chillipepper cultivars, i.e. Cilibangi 4, Cilibangi 5, Cilibangi 6, Helem, Jatilaba, Tit Bulat, Tit Segitiga, Tit Super and Tampar. Mechanical inoculation was conducted to transmit the virus. Infection of the virus was then confirmed with DAS-ELISA.  In general, inoculated chillipepper cultivars developed similar symptoms, i.e. mosaic type for CMV and mottle type for ChiVMV.  More severe symptom was not always observed from mix infection of CMV and ChiVMV. Disease incidence occurred in the range of 16.67 – 86.0% and this caused 18.3 – 98.6% yield loss.  Based on symptom expression, ELISA result, and reduction on yield, it can be concluded that all chillipepper cultivars used in this study could not hold up the virus infection. However, several cultivars showed tolerance response :  Jatilaba, Tit Super, and Tampar for CMV; Cilibangi 4 for ChiVMV; Tit Super for mix infection; and Cilibangi 5 for CMV, ChiVMV, and mix infection.  Further evaluation and investigation involving different chillipepper cultivars should be conducted.


Plant Disease ◽  
1998 ◽  
Vol 82 (12) ◽  
pp. 1298-1303 ◽  
Author(s):  
M. S. Montasser ◽  
M. E. Tousignant ◽  
J. M. Kaper

A benign viral satellite RNA, in combination with a mild strain of cucumber mosaic virus (CMV-S), was used as a “vaccine” or “preinoculum” to demonstrate the feasibility of protecting pepper (Capsicum annuum cv. California Wonder) and melon (Cucurbita melo cv. Janus des Canaries) against two severe CMV strains, CMV-D and CMV-16, in the final 2 years of a 4-year pilot field and greenhouse experiment. In the field, healthy pepper and melon seedlings challenged with CMV-D and CMV-16 reduced yields by 33 to 60%; CMV-S caused only limited yield reduction in pepper and had no effect on the yield of melon. Different time intervals between preinoculation of pepper and melon seedlings with CMV-S and challenge inoculation with the severe CMV strains were tested. All plants challenged 3 weeks after vaccination showed nearly complete protection from subsequent infection by severe strains. The yield from preinoculated and challenged pepper plants was 80% that of untreated plants, while the yield from preinoculated and challenged melon plants was increased slightly over the untreated control plants. The use of this technology for biological control of plant viruses is discussed.


2005 ◽  
Vol 86 (11) ◽  
pp. 3171-3177 ◽  
Author(s):  
Min Sook Hwang ◽  
Sang Hyon Kim ◽  
Jeong Hyun Lee ◽  
Jung Myung Bae ◽  
Kyung Hee Paek ◽  
...  

The genome of Cucumber mosaic virus consists of three single-stranded RNA molecules, RNAs 1, 2 and 3. RNAs 1 and 2 encode the 1a and 2a proteins, respectively, which are necessary for replication of the viral genome and have been implicated in movement of the viral RNAs in plants. The 3a movement protein (MP), encoded by RNA 3, is essential for transferring the RNA genomes from infected cells to adjacent cells across the plasmodesmata. Far-Western analysis demonstrated that bacterially expressed 2a polymerase protein directly interacted with the MP. Interaction was confirmed in a yeast two-hybrid assay, and co-immunoprecipitation analysis showed that the MP interacted only with the 2a polymerase protein. A yeast three-hybrid assay showed that the 1a–2a protein interaction relevant for replicase complex formation was not affected by the MP. Although the MP has no affinity for the 1a protein, it interacted indirectly with the 1a protein via the 2a polymerase protein. These results suggest that the replicase complex may be involved in movement through its interaction with the MP.


Author(s):  
Catur Herison ◽  
Merakati Handayaningsih ◽  
Fahrurrozi Fahrurrozi ◽  
Rustikawati Rustikawati

2021 ◽  
Vol 10 (1) ◽  
pp. ACCEPTED
Author(s):  
Elsayed E. Wagih ◽  
Mohamed M. Zalat ◽  
Maha Adel Kawanna

Two isolates of Cucumber mosaic virus (CMV), CMV-wild tobacco (from Alexandria governorate) and CMV-cucumber (from Kafr El-Sheikh governorate) were investigated in this study. Cytological studies on epidermal strips of Nicotiana glutinosa leaves separately infected with each isolate revealed the presence of viral crystalline inclusion bodies within the infected cells. Electron microscopy of ultrathin sections of CMV infected N. glutinosa leaves showed significant alterations in the shape and internal structure of chloroplasts. The cell wall had serrated edges in infected cells but was more severe in cells infected with CMV-wild tobacco isolate compared to those infected with CMV-cucumber isolate. CMV-cucumber isolate was partially purified from systemically infected leaves of N. glutinosa. The ratio A260/ 280 was 1.0 and the concentration of the virus in the preparation was estimated using an extinction coefficient of E260nm0.1%, 1cm = 5. Yield of purified virus was about 2.8 mg/100 g fresh weight of infected N. glutinosa leaves. Electron microscopy of the purified preparation of CMV showed the presence of numerous spherical particles with a mean particle diameter of 28 nm. Amplified real-time reverse transcription-polymerase chain reaction (qRT-PCR) product of coat protein gene of each isolate was purified and sequenced. Sequences of both isolates had been submitted to GenBank Database and ware assigned accession number (LT669766) for CMV-cucumber isolate and (LT706517) for CMV-wild tobacco isolate. The sequences were edited using Chromas Pro. Version 1.34 software and compared with previously subgrouping of 27 isolates of the virus retrieved from the GenBank database. Both CMV-wild tobacco and CMV-cucumber isolates were closely related to the isolate with the accession number AJ585086 with a similarity of 97.07% and 98.54%, respectively, suggesting that the two isolates belong to subgroup II. According to the available literature, this is the first report in Egypt where CMV isolates belonging to subgroup II have been obtained


Sign in / Sign up

Export Citation Format

Share Document