scholarly journals KETAHANAN BEBERAPA KULTIVAR CABAI TERHADAP CUCUMBER MOSAIC VIRUS DAN CHILLI VEINAL MOTTLE VIRUS

2012 ◽  
Vol 7 (2) ◽  
pp. 130-139
Author(s):  
Muhammad Taufik ◽  
Sri Hendrastuti Hidayat ◽  
Sriani Sujiprihati ◽  
Gede Suastika ◽  
Sientje Mandang Sumaraw

Resistance Evaluation of Chillipepper Cultivars for Cucumber Mosaic Virus and Chilli Veinal Mottle Virus.  The use of resistance culivars is an important strategy for management of virus infection in chillipepper. A research was undergone to study the effect of single and mix infection of CMV and ChiVMV on the disease incidence and on the growth and yield of nine chillipepper cultivars, i.e. Cilibangi 4, Cilibangi 5, Cilibangi 6, Helem, Jatilaba, Tit Bulat, Tit Segitiga, Tit Super and Tampar. Mechanical inoculation was conducted to transmit the virus. Infection of the virus was then confirmed with DAS-ELISA.  In general, inoculated chillipepper cultivars developed similar symptoms, i.e. mosaic type for CMV and mottle type for ChiVMV.  More severe symptom was not always observed from mix infection of CMV and ChiVMV. Disease incidence occurred in the range of 16.67 – 86.0% and this caused 18.3 – 98.6% yield loss.  Based on symptom expression, ELISA result, and reduction on yield, it can be concluded that all chillipepper cultivars used in this study could not hold up the virus infection. However, several cultivars showed tolerance response :  Jatilaba, Tit Super, and Tampar for CMV; Cilibangi 4 for ChiVMV; Tit Super for mix infection; and Cilibangi 5 for CMV, ChiVMV, and mix infection.  Further evaluation and investigation involving different chillipepper cultivars should be conducted.

2011 ◽  
Vol 8 (2) ◽  
pp. 146-153
Author(s):  
Latifah Latifah ◽  
Sri Hendrastuti Hidayat ◽  
Sriani Sujiprihati

Screening Method for Chilli Veinal Mottle Virus  (Chi VMV) and Cucumber Mosaic Virus  (CMV) Resistance in Chillipepper.  ChiVMV and CMV have been reported as the causal agents of main diseases in chillipepper in Indonesia and other Asian countries.  Mix infection of this two viruses was commonly occurred in the field, causing severe disease .  The use of resistance varieties has been proposed for dealing with the yield losses causing by  the viruses.  Breeding program is undergoing for development of chillipepper varieties resistant to ChiVMV and CMV.  Methodology for routine screening activity of chillipepper for resistance to both ChiVMV and CMV needs to be established. This research was conducted in Cikabayan Glass House and Plant Virology Laboratory, Plant Protection Department, Bogor Agricultural University from May 2006 to June 2007. Aim of the research was to develop screening method for simultaneous infection by the two viruses, ChiVMV and CMV.  Inoculation of ChiVMV and CMV was done by single inoculation or repetitive inoculation methods.  In both methods, ChiVMV and CMV were inoculated in different sequences, either ChiVMV or CMV first.  The result showed that incubation period was shorter when CMV was inoculated in advance both in single and repetitive inoculation method.  Mosaic, mottle and malformation type symptom was observed in infected plants. Based on disease incidence, infection of ChiVMV was higher compared to CMV in repetitive inoculation as well as in single inoculation.  Repetitive inoculation methods with virus sequence ChiVMV-CMV-ChiVMV-CMV  was selected for resistance evaluation of chillipepper genotypes.


Plant Disease ◽  
2001 ◽  
Vol 85 (7) ◽  
pp. 801-801 ◽  
Author(s):  
R. Nono-Womdim ◽  
I. S. Swai ◽  
M. L. Chadha ◽  
K. Gebre-Selassie ◽  
G. Marchoux

African eggplant, or garden egg (Solanum aethiopicum) is an important vegetable in most sub-Saharan African countries. Since June 1997, viral symptoms, including mosaic, vein clearing, and stunting, have been observed on several crops of African eggplant cv. Tengeru White at a number of sites in the Arusha region of northern Tanzania. Field inspections revealed disease incidence ranging from 50 to 90%. During the same period, high populations of the green peach aphid Myzus persicae were observed in affected crops of African eggplant. These aphids were also found to reproduce in African eggplants. Flexuous, rodshaped virus-like particles, approximately 750 nm long and 12 nm wide, were found in electron microscope leaf dips from field samples of naturally affected African eggplants. The particle size suggested a species of Potyviridae. Thus, 20 field-infected samples of S. aethiopicum (randomly collected from four farms) were assayed in double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) for the presence of Potato virus Y (PVY) and Pepper veinal mottle virus (PVMV), known to infect tomato and other solanaceous crops in the region (2). However, all samples gave negative results. Further DAS-ELISA were performed with the same extracts from naturally infected plants of S. aethiopicum with antisera directed against Tobacco etch virus, Tobacco vein mottling virus, Pepper mottle virus, and Chilli veinal mottle virus (ChiVMV). All 20 samples were positive only for ChiVMV. ChiVMV, a single-stranded RNA virus transmitted in a nonpersistent manner by several aphid species, is one of the most important viruses of pepper in Asia (1). To confirm DAS-ELISA results, an isolate of ChiVMV from African eggplant was transmitted by mechanical inoculations, resulting in disease on tobacco (Nicotiana tobacco cv. Xanthi nc), pepper (Capsicum annuum cv. Yolo Wonder), tomato (Lycopersicon esculentum cv. Tengeru 97), and African eggplant (S. aethiopicum cv. Tengeru White). Extracts from the inoculated plants tested positive for the presence of ChiVMV in DAS-ELISA. This mechanically transmitted isolate did not infect melon (Cucumis melo), cucumber (C. sativus), or cowpea (Vigna unguiculata), which are nonhosts of ChiVMV. To our knowledge, this is the first report of the natural occurrence of ChiVMV in African eggplant. References: (1) S. K. Green et al. PETRIA 9:332, 1999. (2) R. Nono-Womdim et al. J. S. Afr. Soc. Hort. Sci. 6:41–44, 1996.


2018 ◽  
Vol 3 (2) ◽  
pp. 381-390
Author(s):  
Rodolfo Velásquez-Valle ◽  
Luis Roberto Reveles-Torres ◽  
Jaime Mena-Covarrubias

A nivel mundial el cultivo de chile es afectado por más de 60 enfermedades virales; sin embargo, poco se conoce acerca de ellas en el área productora de chile seco del norte centro de México por lo que el objetivo del presente trabajo consistió en detectar la presencia y sintomatología de cinco virus en parcelas comerciales de chile seco en los estados mencionados. Plantas de chile de los tipos mirasol y ancho fueron muestreadas y se anotó la presencia de síntomas como enanismo, clorosis, deformación de hojas, defoliación, necrosis vascular y ramas unidas. Las muestras fueron analizadas mediante la técnica DAS- ELISA empleando los antisueros para el virus del mosaico del tabaco (Tobacco mosaic virus: TMV), mosaico del pepino (Cucumber mosaic virus: CMV), Y de la papa (Potato virus Y: PVY), moteado del chile (Pepper mottle virus: PepMoV) y jaspeado del tabaco (Tobacco etch virus: TEV). Esos virus fueron identificados en plantas de chile colectadas en las parcelas comerciales de chile seco de los tres estados antes mencionados.


Plant Disease ◽  
2013 ◽  
Vol 97 (7) ◽  
pp. 1004-1004 ◽  
Author(s):  
K. Milojević ◽  
I. Stanković ◽  
A. Vučurović ◽  
D. Ristić ◽  
D. Milošević ◽  
...  

Peperomia tuisana C.DC. ex Pittier (family Piperaceae) is an attractive succulent grown as an ornamental. Despite its tropical origins, it can be successfully grown indoors in any climate. In March 2012, three samples of P. tuisana showing virus-like symptoms were collected from a commercial greenhouse in Zemun (District of Belgrade, Serbia) in which estimated disease incidence was 80%. Infected plants showed symptoms including necrotic ringspots and line patterns that enlarged and caused necrosis of leaves. A serious leaf drop led to growth reduction and even death of the plant. Leaves from three symptomatic P. tuisana plants were sampled and analyzed by double-antibody sandwich (DAS)-ELISA using commercial diagnostic kits (Bioreba AG, Reinach, Switzerland) against the most common viral pathogens of ornamentals: Cucumber mosaic virus (CMV), Tomato spotted wilt virus (TSWV), and Impatiens necrotic spot virus (INSV) (1,2). Commercial positive and negative controls were included in each ELISA. Serological analyses showed that all plants were positive for CMV and negative for TSWV and INSV. The ELISA-positive sample (isolate 1-12) was mechanically inoculated onto five plants each of three test species as well as of healthy young P. tuisana using 0.01 M phosphate buffer (pH 7). Chlorotic local lesions on Chenopodium quinoa and severe mosaic and leaf malformations were observed on all inoculated Nicotiana tabacum ‘Samsun’ and N. glutinosa. Also, the virus was successfully mechanically transmitted to P. tuisana that reacted with symptoms identical to those observed on the original host plants. All mechanically inoculated plants were positive for CMV in DAS-ELISA. For further confirmation of CMV infection, reverse transcription (RT)-PCR was performed on extracts made from symptomatic P. tuisana, N. tabacum ‘Samsun,’ and N. glutinosa leaf materials. Total RNAs were extracted with the RNeasy Plant Mini Kit (Qiagen, Hilden, Germany) and RT-PCR was carried out using One-Step RT-PCR Kit (Qiagen). A CMV-specific primer pair, CMVCPfwd and CMVCPrev (3), which amplifies an 871-bp fragment of the entire coat protein (CP) gene and part of 3′- and 5′-UTRs, were used for both amplification and sequencing. Total RNAs obtained from the Serbian CMV isolate (HM065510) and healthy P. tuisana were used as positive and negative controls, respectively. A product of the correct predicted size was obtained in all naturally and mechanically infected plants, as well as positive control. No amplicon was recorded in the healthy control. The amplified product derived from isolate 1-12 was purified (QIAquick PCR Purification Kit, Qiagen), directly sequenced in both directions, deposited in GenBank (KC505441), and analyzed by MEGA5 software (4). Sequence comparison of the complete CP gene (657 nt) revealed that the Serbian isolate 1-12 shared the highest nucleotide identity of 99.1% (99.5% amino acid identity) with the Japanese isolate (AB006813). To our knowledge, this is the first report on the occurrence of CMV in P. tuisana in Serbia. This is also an important discovery since P. tuisana is commonly grown together with other ornamental hosts of CMV, and thus could represent a serious threat for future expansion of CMV in the greenhouse floriculture industry in Serbia. References: (1) M. L. Daughtrey et al. Plant Dis. 81:1220, 1997. (2) S. Flasinski et al. Plant Dis. 79:843, 1995. (3) K. Milojevic et al. Plant Dis. 96:1706, 2012. (4) K. Tamura et al. Mol. Biol. Evol. 28:2731, 2011.


2006 ◽  
Vol 96 (3) ◽  
pp. 240-247 ◽  
Author(s):  
John F. Murphy ◽  
Kira L. Bowen

The occurrence of more than one virus species in a single plant is not uncommon in cultivated and native plant species. A mixed virus infection may lead to greater disease severity than individual viral components and this is sometimes referred to as a synergistic disease. Although, in some cases, synergism has been demonstrated for various plant growth parameters such as plant height, weight, and yield, proof of synergy typically has not been demonstrated for symptom severity when the mixed virus infection was not lethal. We demonstrated synergy in bell pepper plants co-infected with Cucumber mosaic virus (CMV) and Pepper mottle virus (PepMoV) relative to each virus alone for stem height (two of three trials) and aboveground fresh weight (one of three trials) using factorial analysis and Abbott's equation for synergy. This approach allowed affirmation of the type of response (i.e., synergistic rather than antagonistic) and statistical proof of synergy. A detailed evaluation of symptom severity for each viral treatment revealed three phases associated with host plant developmental stages. A numerical symptom severity rating scale was developed and used in each of two equations to demonstrate statistical proof for synergy based on symptom severity for co-infected plants. Virus accumulation in noninoculated leaves was determined by enzyme-linked immunosorbent assay. In singly infected plants, CMV titers declined in mildly symptomatic leaves representing later stages of plant development, but titers increased in similar leaves of co-infected plants. In contrast, PepMoV titers did not differ in singly or co-infected plants.


2016 ◽  
Vol 8 (4) ◽  
pp. 110-115
Author(s):  
Mimi Sutrawati ◽  
◽  
Djamilah Djamilah ◽  
Andreani Kinata ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document