scholarly journals Development of an Efficient In vitro Regeneration Protocol for Chrysanthemum (Chrysanthemum morifolium Ramat)

2022 ◽  
Vol 31 (2) ◽  
pp. 161-171
Author(s):  
Jebunnesa Chowdhury ◽  
MI Hoque ◽  
RH Sarker

An efficient and rapid in vitro regeneration protocol was developed for chrysanthemum (Chrysanthemum morifolium Ramat) using two local varieties of Bangladesh namely, BARI Chrysanthemum-2 (BARI Chry-2) and local yellow (Y). MS medium supplemented with nine different concentrations and combinations of BAP and IAA was employed to optimize regeneration protocol using young in vitro derived leaf explants. Direct organogenesis was observed from the leaf explants on MS medium supplemented with 0.5 mg/l BAP and 2.0 mg/l IAA (T6) for both the varieties. This treatment (T6) induced shoot buds directly on the adaxial surface of the leaf providing the highest regeneration percentage (90% for BARI Chry-2 and 94.73% for Y), the highest number of shoot/explant (7.6 for BARI Chry-2 and 8.6 for Y) and maximum length of the shoot after six weeks (3 cm for BARI Chry-2 and 2.9 cm for Y) of culture. Explants with initially regenerated shoots were subculture on hormone free MS medium for shoot elongation after 4 weeks of their inoculation. During elongation of shoots, 90-95% of the regenerated shoots produced roots spontaneously in hormone free MS medium within 7-8 weeks of their inoculation. Rooted plantlets were transplanted to the field following hardening where 100% plantlets were survived and produced flower without any variation. Plant Tissue Cult. & Biotech. 31(2): 161-171, 2021 (December)

1970 ◽  
Vol 3 ◽  
Author(s):  
Mallapa Hanumanthu Niranjan ◽  
Mysore Shankar Sudarshana

The objective of this work was to study the histological events related to the regeneration process of a medicinal plant, Nymphoides cristatum (Roxb). Leaf explants were cultured on MS medium supplemented with 0.5 mgl-1 of 6-benzyl amino purine (BAP). About 90% of explants gave rise to shoots after 15 days of incubation. The histological studies showed that the regeneration originated directly from parenchymatous cells and direct organogenesis after 20 days of culture could be observed. Buds and roots were found completely differentiated after 40 days of culture and number of shoots per explants was 30. Micorshoots were rooted in hormone - free medium and the plants obtained grew in artificial pond under green house conditions. Key words: Leaf, Histology, in vitro regeneration, Nymphoides cristatum.  DOI: 10.3126/ijls.v3i0.2370


2017 ◽  
Vol 4 (2) ◽  
pp. 52-56
Author(s):  
Mallika Devi T

In the present study the protocol for callus induction and regeneration in Azima tetracantha has been developed in culture medium. The young apical leaf explants were used for callus induction on MS medium containing BAP and NAA at 1.0 and 0.4mgl-1 respectively showed maximum callus induction (73%). The amount of callus responded for shoot formation (74%) was obtained in the MS medium containing BAP (1.5 mgl-1) and NAA (0.3mgl-1).The elongated shoots were rooted on half strength medium supplemented with IBA (1.5 mgl-1) and Kn (0.4 mgl-1) for shoots rooted. Regenerated plantlets were successfully acclimatized and hardened off inside the culture and then transferred to green house with better survival rate.


2018 ◽  
Vol 53 (2) ◽  
pp. 133-138 ◽  
Author(s):  
S Khan ◽  
TA Banu ◽  
S Akter ◽  
B Goswami ◽  
M Islam ◽  
...  

An efficient in vitro regeneration system was developed for Rauvolfia serpentina L. through direct and indirect organogenesis from nodal and leaf explants. Among the different growth regulators, MS medium supplemented with 2.0 mg/l BAP, 0.5mg/l IAA and 0.02mg/l NAA found best for the multiple shoot formation from nodal segments. In this combination 98% explants produced multiple shoots and the average number of shoots per explants is 13∙4. The frequency of callus induction and multiple shoot induction from leaves was highest 88% in MS medium supplemented with 2.0 mg/l BAP, where mean number of shoots/explants was 12.5. The highest frequency of root induction (80%) and mean number of roots/plantlets (10) were obtained on half strength of MS medium containing 0.2 mg/l IBA. The rooted plantlets were transferred for hardening following acclimatization and finally were successfully established in the field.Bangladesh J. Sci. Ind. Res.53(2), 133-138, 2018


2011 ◽  
Vol 3 (3) ◽  
pp. 93-96
Author(s):  
Ayobola M.A. SAKPERE ◽  
Ejeoghene R. AYISIRE ◽  
Olufemi I. ABIOYE

This study investigated the potential of Launea taraxacifolia for in vitro regeneration. Stem and leaf explants were inoculated on full strength Murashige and Skoog (MS) medium supplemented with varying concentrations of 2, 4-dichlorophenoxyacetic acid (2,4-D). Leaf explants responded to all concentrations of 2,4-D used while stem explants responded to only two of the 2, 4-D concentrations suggesting that leaf explants might be a better source of explants. Leaf explants generated shoots on medium supplemented with 0.5 mg/l kinetin and 0.1 mg/l 2, 4-D. This study is the first report on in vitro regeneration of Launea taraxacifolia.


Author(s):  
R. Abinaya

In this present work, an in-vitro regeneration protocol for Crescentia alata (C. alata) was developed using various explants on Murashige and Skoog (MS) medium augmented with different concentrations and combinations of plant growth regulators (PGRs) for direct and indirect regeneration. The direct organogenesis was established from nodes and internodes on MS medium supplemented with cytokinins and auxins. The indirect organogenesis via callus phase was obtained from leaf, nodes and internodes on MS medium supplemented with different concentrations of PGRs. The high frequency shoot organogenesis were achieved directly from nodal explants were cultured on MS medium supplemented with 3.0 mg/L BAP+0.5 mg/L KIN +1.0 mg/L NAA. Indirect organogenesis callogenic frequency was optimized at the concentration of MS medium containing 1.0 mg/L BAP + 5.0 mg/L IAA. The callus was obtained from all the explants were used, among these explants internodal explants gave best result on MS medium supplemented with different concentrations of cytokinins and auxins for indirect organogenesis experiment. Indirect organogenesis the highest number of shoot regeneration was obtained in MS Basal Medium with 4.0 mg/L BAP + 0.5 mg/L KIN + 2.0 mg/L NAA from internodal explants. For root formation the regenerative shoots which were sub cultured on MS medium containing different ratios of auxins. The rooted plantlets were transferred successfully to the pots containing sterilized soil and were successfully hardened at greenhouse condition for 20 days then exposed to the natural environment. This is the first successful micropropagation report of an efficient and rapid in-vitro clonal propagation protocol for C. alata by direct and indirect shoot organogenesis through various explants, which can be employed for conservation of this important medicinal tree species as well as the utilization of an biologically important active biomolecules. This protocol can be very useful to obtain plants from various explants, without the requirement of meristematic regions, enabling the obtainment of a higher number of plants in short period.


Author(s):  
Md. Shoyeb ◽  
Kanis Fatema ◽  
Md. Abdur Rauf Sarkar ◽  
Atikur Rahman ◽  
Shaikh Mizanur Rahman

Tobacco has been widely used as a model plant for stable and non-stable gene function analysis. Successful Agrobacterium-mediated transformation mainly depends on in vitro regeneration of tobacco plant. However, a reliable and standard regeneration protocol of tobacco using multiple explants is limited. In this study, we established a reliable and reproducible regeneration protocol of tobacco using three different explants i.e. cotyledon, hypocotyl and leaf. Preliminary, surface sterilized tobacco seeds were germinated on growth regulator free MS medium. Thereafter, in vitro germinated explants were inoculated into Murashige and Skoog [1] media supplemented with different combination and types of growth regulators for callus induction and subsequent regeneration of plantlets. It was revealed that, regeneration ability of explants is greatly influenced by type and nature of the explant. Among the three explants, higher callus induction (95%) was obtained in MS medium supplemented with 2.0 mg l-1 kinetin + 2.0 mg l-1 IAA from leaf explant. Also, leaf explant exhibited much higher regeneration ability (95%) than hypocotyl (60%) and cotyledon (45%) explants. Significantly highest number of shoots (8.0) were regenerated from leaf explants cultured on MS medium supplemented with 3.0 mg l-1 Kinetin+1.0 mg l-1 IAA compared to the other hormone combinations. Regenerated mature shoots were showed normal root after transferred onto ½ MS medium containing 0.3 mg l-1 IBA. This study will provide valuable information related to in vitro regeneration of tobacco plantlets using cotyledon, hypocotyl and leaf explants and will be used as a standard protocol for Agrobacterium-mediated transformation for gene function analysis.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1513
Author(s):  
Izabela Grzegorczyk-Karolak ◽  
Katarzyna Hnatuszko-Konka ◽  
Marta Krzemińska ◽  
Monika A. Olszewska ◽  
Aleksandra Owczarek

Salvia bulleyana is a rare Chinese medicinal plant that due to the presence of polyphenols lowers the risk of some chronic diseases especially those related to the cardiovascular system. The present study examines the organogenic competence of various combinations and concentrations of plant growth regulators to develop an efficient protocol for in vitro regeneration of S. bulleyana via leaf explants, maintaining the high production of active constituents. The purpose of the study was also to assess the possibilities of using a cytokinin-based regeneration to effectively produce therapeutic compounds. The adventitious shoot formation was observed through direct organogenesis on media with purine derivatives (meta-topolin, mT and benzylaminopurine, BAP), and through indirect organogenesis on media with urea derivatives (tidiazuron, TDZ and forchlorfenuron, CPPU). The highest regeneration frequency (95%) with 5.2 shoots per explant was obtained on leaves cultured on Murashige and Skoog (MS) medium containing 0.1 mg/L naphthalene-1-acetic acid (NAA) and 2 mg/L BAP. Following inter simple sequence repeat (ISSR) marker-based profiling, the obtained organogenic shoot lines revealed a similar banding pattern to the mother line, with total variability of 4.2–13.7%, indicating high level of genetic stability. The similar genetic profile of the studied lines translated into similar growth parameters. Moreover, HPLC analysis revealed no qualitative differences in the profile of bioactive metabolites; also, the total polyphenol content was similar for different lines, with the exception of the shoots obtained in the presence of CPPU that produced higher level of bioactive compounds. This is the first report of an effective and rapid in vitro organogenesis protocol for S. bulleyana, which can be efficiently employed for obtaining stable cultures rich in bioactive metabolites.


HortScience ◽  
1993 ◽  
Vol 28 (4) ◽  
pp. 262B-262
Author(s):  
C. S. Prakash ◽  
R. Gosukonda ◽  
A. Porobo Dessai ◽  
E. Blay ◽  
K. Dumenvo

Lack of suitable methods to develop adventitious plantlets in vitro is a limiting factor in producing transgenic sweetpotato plants through gene transfer. Studies were conducted to develop an in vitro high frequency regeneration protocol for sweetpotato that is rapid and consistent. When 27 genotypes of sweetpotato were screened, five were identified as highly regenerative (318846-3, PI 531143, Hi Dry, Rojoblanco and Beauregard). High frequency regeneration of shoots (in 60 to 80% explants) was observed within 30 days when leaf explants with intact petioles from the apical portions of the in vitro shoots were cultured on a MS medium with 2,4-D (0.2 mg/l) for three days and then transferred to a medium with zeatin riboside (ZR) (0.2 mg/l). However, thidiazuron (0.2 mg/l) had to be substituted for ZR to achieve regeneration of shoots from petiole (0.5 to 1 cm) explants (the most responsive organ for transformation by Agrobacterium). Petiole explants developed shoots efficiently (80-90%) and rapidly (10 to 21 d), but were specific to the genotype 318846-3. The resulting plantlets were vigorous and normal, and were transferred to the green house with little or no mortality.


Sign in / Sign up

Export Citation Format

Share Document