scholarly journals Therapeutic Efficacy of Bone Marrow Derived Mesenchymal Stem Cells in Ototoxic Sensorineural Hearing Loss

2020 ◽  
Vol 63 (12) ◽  
pp. 564-569
Author(s):  
Subin Kim ◽  
Yoon Hee Kwon ◽  
In Beom Kim ◽  
Young Jun Seo ◽  
Jae Sang Han ◽  
...  

Background and Objectives Ototoxic sensorineural hearing loss causes permanent hearing loss in most cases. Recently there have been many reports describing cell base therapy with stem cells that has some effect on hearing recovery. We evaluated the efficacy of clinical grade, pre-made, human bone marrow derived mesenchymal stem cells (BM-MSCs) in ototoxic deaf animal model.Materials and Method BM-MSCs were cultured in a clinical grade laboratory. The animals were divided into 2 groups as follows: a saline injected control group and a stem cell injected group (MSC-group). Cultured MSCs were transplanted into the brachial vein of the deaf mice model. We recorded auditory brainstem response (ABR) and conducted immunohistochemistry at 1, 3, and 5 weeks.Results After the transplantation of MSC, a significant improvement in the hearing threshold of ABR was observed in the MSC transplanted group. Five weeks after transplantation of MSCs, hair cell regeneration was confirmed from the basal to the apex of the cochlea in fluorescent dyed image under the microscope compared to the control group.Conclusion BM-MSCs were effective in an acute ototoxic deaf animal model. These results show that stem cell transplantation mediate inner ear regeneration.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Chang-qiang Tan ◽  
Xia Gao ◽  
Lang Guo ◽  
He Huang

Bone marrow mesenchymal stem cells (BMSCs) expressing recombinant IL-4 have the potential to remediate inflammatory diseases. We thus investigated whether BMSCs expressing exogenous IL-4 could alleviate autoimmune sensorineural hearing loss. BMSCs isolated from guinea pigs were transfected with recombinant lentivirus expressing IL-4. A total of 33 animals were divided into three groups. Group A received scala tympani injection of IL-4-expressing BMSCs, and Group B received control vector-expressing BMSCs, and Group C received phosphate-buffered saline. The distribution of implanted BMSCs in the inner ears was assessed by immunohistochemistry and fluorescence microscopy. Auditory brain-stem response (ABR) was monitored to evaluate the auditory changes. Following BMSCs transplantation, the threshold levels of ABR wave III decreased in Groups A and B and significant differences were observed between these two groupsP<0.05. Transplanted BMSCs distributed in the scala tympani and scala vestibuli. In some ears with hearing loss, there was a decrease in the number of spiral ganglion cells and varying degrees of endolymphatic hydrops or floccule. Following transplantation, the lentivirus-infected BMSCs migrated to the inner ear and produced IL-4. Our results demonstrate that, upon transplantation, BMSCs and BMSCs expressing recombinant IL-4 have the ability to remediate the inflammatory injury in autoimmune inner ear diseases.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Kevin T. Chorath ◽  
Matthew J. Willis ◽  
Nicolas Morton-Gonzaba ◽  
Walter J. Humann ◽  
Alvaro Moreira

2020 ◽  
Vol 25 (6) ◽  
pp. 336-344
Author(s):  
Jingqian Tan ◽  
Jia Luo ◽  
Xin Wang ◽  
Yanbing Jiang ◽  
Xiangli Zeng ◽  
...  

<b><i>Introduction:</i></b> Auditory brainstem response (ABR) is one of the commonly used methods in clinical settings to evaluate the hearing sensitivity and auditory function. The current ABR measurement usually adopts click sound as the stimuli. However, there may be partial ABR amplitude attenuation due to the delay characteristics of the cochlear traveling wave along the basilar membrane. To solve that problem, a swept-tone method was proposed, in which the show-up time of different frequency components was adjusted to compensate the delay characteristics of the cochlear basilar membrane; therefore, different ABR subcomponents of different frequencies were synchronized. <b><i>Methods:</i></b> The normal hearing group, moderate sensorineural hearing loss group, and severe sensorineural hearing loss group underwent click ABR and swept-tone ABR with different stimulus intensities. The latencies and amplitudes of waves I, III, and V in 2 detections were recorded. <b><i>Results:</i></b> It was found that the latency of each of the recorded I, III, and V waves detected by swept-tone ABR was shorter than that by click ABR in both the control group and experimental groups. In addition, the amplitude of each of the recorded I, III, and V waves, except V waves under 60 dB nHL in the moderate sensorineural hearing loss group, detected by swept-tone ABR was larger than that by click ABR. The results also showed that the swept-tone ABR could measure the visible V waves at lower stimulus levels in the severe sensorineural hearing loss group. <b><i>Conclusion:</i></b> Swept-tone improves the ABR waveforms and helps to obtain more accurate threshold to some extent. Therefore, the proposed swept-tone ABR may provide a new solution for better morphology of ABR waveform, which can help to make more accurate diagnosis about the hearing functionality in the clinic.


2007 ◽  
Vol 330-332 ◽  
pp. 1137-1140
Author(s):  
Chan Wai Chan ◽  
K.H.K. Wong ◽  
K.M. Lee ◽  
Ling Qin ◽  
H.Y. Yeung ◽  
...  

Basic fibroblast growth factor (bFGF) has been shown to maintain the osteogenicity of bone marrow derived mesenchymal stem cell (MSCs) in vitro. This study was to investigate whether bFGF with osteogenic supplements could enhance bone formation of posterior spinal fusion. Rabbit bone marrow derived mesenchymal stem cells were selected by adherence on plastic culture-ware. The MSCs were exposed to dexamethasone with (bFGF group, n=6) or without bFGF (OS group, n=6). Treated cells of two groups were seeded on β-tricalcium phosphate ceramics for one day and then implanted onto L5 and L6 transverse processes of the same animal in posterior spinal fusion without decortication. The ceramics acted as control (n=6). Three fluorochromes were injected sequentially as tetracycline at week 2, xylenol orange at week 4 and calcein at week 6. The spinal segments were harvested at week 7. The bone mineral content (BMC) and volume of transverse processes was measured by peripheral quantitative computed tomography. The specimens were underwent undecalcified histology. The mineralization process was examined by fluorescent microscopy. The BMC of transverse processes in OS group was 16% greater than bFGF and control group significantly. The volume of transverse process in OS and bFGF group was significantly greater than control group by 54% and 46% respectively. The volume of transverse processes in OS group was 6% greater than bFGF group though not statistically significant. In histology, newly formed bone grew from two processes towards each other resulting in a relatively short gap distance in OS and bFGF group while less regenerated bone was observed in the control group. At the mineralization front, calcein which was injected into animal at week 6, was predominately labeled in bFGF group. In OS group, both xylenol orange (at week 4) and calcein labeled were found. In conclusion, mesenchymal stem cells pre-exposed to bFGF were not found to give additional enhancement effect on bone formation in the posterior spinal fusion model.


2015 ◽  
Vol 41 (3) ◽  
pp. 284-291 ◽  
Author(s):  
Mojgan Paknejad ◽  
Mohamadreza Baghaban Eslaminejad ◽  
Baharak Ghaedi ◽  
Amir-Reza Rokn ◽  
Afshin Khorsand ◽  
...  

The aim of the present study was to investigate an isolation procedure to culture mesenchymal stem cells derived from bone marrow and evaluate their potential in periodontal regeneration. Potential stem cells from bone marrow, aspirated from the iliac crest of nine mongrel canines 1 to 2 years of age, were cultivated. After the examination of surface epitopes of the isolated cells, the total RNA from osteogenic, adipogenic, and chondrogenic cell cultures were analyzed by reverse transcription polymerase chain reaction (RT-PCR) to confirm stem cell gene expressions. 2 × 107 mL of the stem cells were loaded on 0.2 mL of anorganic bovine bone mineral (ABBM) granules. In each animal, bilateral acute/chronic intrabony periodontal defects were created surgically and by placement of ligatures around the cervical aspect of the teeth. At week 5, after flap debridement, the bilateral defects were randomly assigned to 2 treatment groups: the control group received ABBM, and the test group received BMSCs-loaded ABBM. Eight weeks after transplantation, regenerative parameters were analyzed histologically and histometrically. The RNA expressions confirmed the cultivation of mesenchymal stem cell. More new cementum and periodontal ligament (PDL) were measured in the test group (cementum: 3.33 ± 0.94 vs 2.03 ± 1.30, P = 0.027; PDL: 2.69 ± 0.73 vs 1.53 ± 1.21, P = 0.026). New bone formation was similar in both groups (2.70 ± 0.86 vs 1.99 ± 1.31; P = 0.193). Mesenchymal stem cells derived from bone marrow should be considered a promising technique for use in patients with periodontal attachment loss and merits further investigations.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Muhammad Waqas ◽  
Iram Us-Salam ◽  
Zainab Bibi ◽  
Yunfeng Wang ◽  
He Li ◽  
...  

The hair cells that reside in the cochlear sensory epithelium are the fundamental sensory structures responsible for understanding the mechanical sound waves evoked in the environment. The intense damage to these sensory structures may result in permanent hearing loss. The present strategies to rehabilitate the hearing function include either hearing aids or cochlear implants that may recover the hearing capability of deaf patients to a limited extent. Therefore, much attention has been paid on developing regenerative therapies to regenerate/replace the lost hair cells to treat the damaged cochlear sensory epithelium. The stem cell therapy is a promising approach to develop the functional hair cells and neuronal cells from endogenous and exogenous stem cell pool to recover hearing loss. In this review, we specifically discuss the potential of different kinds of stem cells that hold the potential to restore sensorineural hearing loss in mammals and comprehensively explain the current therapeutic applications of stem cells in both the human and mouse inner ear to regenerate/replace the lost hair cells and spiral ganglion neurons.


2020 ◽  
Vol 47 (6) ◽  
pp. 4723-4736 ◽  
Author(s):  
Kevin Chorath ◽  
Matthew Willis ◽  
Nicolas Morton-Gonzaba ◽  
Alvaro Moreira

2018 ◽  
Vol 10 (2) ◽  
pp. 171-8 ◽  
Author(s):  
Ahmad Mozafar ◽  
Davood Mehrabani ◽  
Akbar Vahdati ◽  
Ebrahim Hosseini ◽  
Mohsen Forouzanfar

BACKGROUND: Stem cell-based therapy is one of the newest and evolving techniques in reproductive medicine. The aim of this study was to investigate the effect of allogeneic bone marrow mesenchymal stem cells (BM-MSCs) transplantation on the testis of busulfan induced azoospermia in Balb/C mice.METHODS: Eighteen adult Balb/C mice were divided into three equal groups including control, busulfan and busulfan+cell therapy (busul+CT). For induction of azoospermia, busulfan and busul+CT groups received two injections of 10 mg/Kg of busulfan intraperitoneally with 21 days interval. In the cell therapy group 35 days after the last injection of busulfan, cluster of differentiation (CD)90+/CD34-/CD45- BM-MSCs were injected into the efferent duct of testis. Eight weeks after the BM-MSCs therapy, mice were sacrificed and tissues were taken for histological and histomorphometric evaluations.RESULTS: In busul+CT group, cellular and total diameters and cellular and cross-sectional areas significantly increased in comparison to busulfan group (p˂0.001), but there were no significant differences between busul+CT and control group (p˃0.05). Numerical density and tubular count per area unit in busul+CT and control groups were significantly less than busulfan group (p˂0.001), but there were no significant difference between busul+CT and control group (p˃0.05). The luminal diameter and area showed no significant change in all groups (p˃0.05). In busul+CT group, spermatogenesis index significantly increased when compared to busulfan and control groups (p˂0.001 and p˂0.05, respectively).CONCLOSION: Histomorphometric findings showed CD90+/CD34-/CD45- BM-MSCs transplantation on the testis of busulfan-induced azoospermic in Balb/C mice recovered spermatogenesis.KEYWORDS: mesenchymal stem cell, cell therapy, azoospermia, busulfan, mouse


Sign in / Sign up

Export Citation Format

Share Document