scholarly journals The theoretical study of anticancer rhodium complexes and methyl groups effect on ligands in chemical reactivity, global descriptors, ADMET by DFT study

2021 ◽  
Vol 5 (2) ◽  
pp. 1-13
Author(s):  
Mohammad Jahidul ISLAM ◽  
Ajoy KUMER ◽  
Md Wahab KHAN
2021 ◽  
Vol 27 (7) ◽  
Author(s):  
Ali Barhoumi ◽  
Mohammed El Idrissi ◽  
Abdellah Zeroual ◽  
Abdessamad Tounsi ◽  
Salam Bakkas ◽  
...  

Fuel ◽  
2020 ◽  
Vol 278 ◽  
pp. 118305
Author(s):  
Yuting Li ◽  
Hui Shang ◽  
Qi Zhang ◽  
Mostafa Elabyouki ◽  
Wenhui Zhang

2021 ◽  
Vol 37 (4) ◽  
pp. 805-812
Author(s):  
Ahissandonatien Ehouman ◽  
Adjoumanirodrigue Kouakou ◽  
Fatogoma Diarrassouba ◽  
Hakim Abdel Aziz Ouattara ◽  
Paulin Marius Niamien

Our theoretical study of stability and reactivity was carried out on six (06) molecules of a series of pyrimidine tetrazole hybrids (PTH) substituted with H, F, Cl, Br, OCH3 and CH3 atoms and groups of atoms using the density function theory (DFT). Analysis of the thermodynamic formation quantities confirmed the formation and existence of the series of molecules studied. Quantum chemical calculations at the B3LYP / 6-311G (d, p) level of theory determined molecular descriptors. Global reactivity descriptors were also determined and analyzed. Thus, the results showed that the compound PTH_1 is the most stable, and PTH_5 is the most reactive and nucleophilic. Similarly, the compound PTH_4 is the most electrophilic. The analysis of the local descriptors and the boundary molecular orbitals allowed us to identify the preferred atoms for electrophilic and nucleophilic attacks.


RSC Advances ◽  
2015 ◽  
Vol 5 (53) ◽  
pp. 42329-42340 ◽  
Author(s):  
Chandan Sahu ◽  
Deepanwita Ghosh ◽  
Abhijit K. Das

A DFT study has been adopted to explore the catalytic CO oxidation on a free PdxO2+ (x = 4–6) cluster.


Author(s):  
Kouadio Valery Bohoussou ◽  
Anoubilé Bénié ◽  
Mamadou Guy-Richard Koné ◽  
N’guessan Yao Silvère Diki ◽  
Kafoumba Bamba ◽  
...  

In this work the formation of vinylphosphines was studied through the hydrophosphination reaction. The study aims to rationalize the stereoselectivity of these compounds using quantum DFT methods. This theoretical study of chemical reactivity was conducted at B3LYP/6-311 + G (d, p) level. Global chemical reactivity descriptors, stationary point energies and activation barriers were examined to foretell the relative stability of the stereoisomers formed. The various results obtained have revealed that the addition of arylphosphine to dihalogenoacetylene is stereospecific. The Trans form of vinylphosphines is more stable than the Cis form, when the substituent on phosphorus generates less or no π-conjugations. On the other hand, the Cis isomer is predominant when the aryl radical favors more π-conjugations. The theoretical results obtained are in agreement with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document