scholarly journals Coculture of white rot fungi enhance laccase activity and its dye decolorization capacity

2020 ◽  
Vol 9 (11) ◽  
pp. e88191110643
Author(s):  
Katielle Vieira Avelino ◽  
Marisangela Isabel Wietzikoski Halabura ◽  
Renan Alberto Marim ◽  
Nelma Lopes Araújo ◽  
Maria Graciela Iecher Faria Nunes ◽  
...  

Fungal cocultures can promote complex interactions that result in physiological and biochemical alterations that favor the synergic and more efficient action of extracellular enzymes such as laccase. Thus, coculture can be used as a strategy to increase enzymatic activity, dye degradation, and bioremediation of textile effluents. This study aimed to evaluate the coculture effect of Lentinus crinitus, Pleurotus ostreatus, Pycnoporus sanguineus, and Trametes polyzona on laccase activity, mycelial biomass production, and in vitro decolorization of azo, anthraquinone, and triphenylmethane dyes. The species were cultivated in liquid medium in monoculture and coculture in paired combinations for 15 days to determine the laccase activity and produced mycelial biomass. The enzymatic extracts of fungal cultivations were used in decolorization tests of reactive blue 220 (RB220), malachite green (MG), and remazol brilliant blue R (RBBR). Pleurotus-Trametes, Lentinus-Pleurotus, and Lentinus-Trametes cocultures increase laccase activity compared to respective monocultures. Lentinus-Pycnoporus, Lentinus-Trametes, Lentinus-Pleurotus, and Pleurotus-Trametes cocultures stimulate mycelial biomass production in relation to their respective monocultures. The enzymatic extracts of monocultures and cocultures promoted the decolorization of all dyes. RB220 dye presented fast decolorization. In 24 h, all extracts reached maximum decolorization and the greatest color reduction percentage was 90% for Pleurotus-Trametes coculture extract. Pleurotus-Trametes extract also increased the decolorization of MG and RBBR dyes when compared to their respective monocultures in 48 h and 72 h, respectively. However, RBBR dye presented the greatest resistance to decolorization.

Author(s):  
Sitompul Afrida ◽  
Toshihiro Watanabe ◽  
Yutaka Tamai

Previous screening analyses demonstrated that the in vivo biobleaching activities of the white-rot fungi Irpex lacteus KB-1.1 and Lentinus tigrinus LP-7 are higher than those of Phanerochaete chrysosporium and Trametes versicolor. The purpose of the current study was to examine the production of extracellular enzymes of these four white-rot fungi grown on three types of low-cost media containing agricultural and forestry waste, and to evaluate the ability of the produced extracellular enzymes to biobleach Acacia oxygen-delignified kraft pulp (A-OKP). The biobleaching activity of extracellular fractions of I. lacteus, L. tigrinus, T. versicolor, and P. chrysosporium cultures was the most pronounced after 3 days of incubation with Acacia mangium wood powder supplemented with rice bran and 1% glucose (WRBG) with resultant Kappa number reduction of 4.4%, 6.7%, 3.3%, and 3.3%, respectively. Therefore, biobleaching ability of I. lacteus and L. tigrinus have been shown to be higher than of T. versicolor and P. chrysosporium, both in vivo and in vitro.


2003 ◽  
Vol 69 (2) ◽  
pp. 1320-1324 ◽  
Author(s):  
Jonathan D. Van Hamme ◽  
Eddie T. Wong ◽  
Heather Dettman ◽  
Murray R. Gray ◽  
Michael A. Pickard

ABSTRACT Microbial metabolism of organosulfur compounds is of interest in the petroleum industry for in-field viscosity reduction and desulfurization. Here, dibenzyl sulfide (DBS) metabolism in white rot fungi was studied. Trametes trogii UAMH 8156, Trametes hirsuta UAMH 8165, Phanerochaete chrysosporium ATCC 24725, Trametes versicolor IFO 30340 (formerly Coriolus sp.), and Tyromyces palustris IFO 30339 all oxidized DBS to dibenzyl sulfoxide prior to oxidation to dibenzyl sulfone. The cytochrome P-450 inhibitor 1-aminobenzotriazole eliminated dibenzyl sulfoxide oxidation. Laccase activity (0.15 U/ml) was detected in the Trametes cultures, and concentrated culture supernatant and pure laccase catalyzed DBS oxidation to dibenzyl sulfoxide more efficiently in the presence of 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) than in its absence. These data suggest that the first oxidation step is catalyzed by extracellular enzymes but that subsequent metabolism is cytochrome P-450 mediated.


1985 ◽  
Vol 63 (2) ◽  
pp. 337-339 ◽  
Author(s):  
Elmer L. Schmidt

Influences of eight saturated aliphatic acids (C5–C10, C12, and C16) on basidiospores of four isolates of wood-decay fungi (Poria tenuis and Trametes hispida, white rot fungi, and two isolates of the brown rot fungus Gloeophyllum trabeum) were observed in vitro. Spore responses after 24 h on malt extract agar containing 10, 102 or 103 ppm of each acid included normal germination, delay of germ tube emergence, vacuolation and degeneration of spore cytoplasm, and prevention of germ tube development without spore destruction. Acids of chain length C5–C10 prevented spore germination and killed spores of all fungi at concentrations of 20–50 ppm in media, whereas other acids tested were less active. Spore germination assay of decay fungi may prove useful as a screening tool to compare potency of wood preservatives.


1986 ◽  
Vol 64 (8) ◽  
pp. 1611-1619 ◽  
Author(s):  
James E. Adaskaveg ◽  
Robert L. Gilbertson

The in vitro wood decay abilities of Ganoderma lucidum (W. Curt.: Fr.) Karst. and G. tsugae Murr. were studied using the following woods in agar block decay chambers: Vitis vinifera L., Quercus hypoleucoides A. Camus, Prosopis velutina Woot., Abies concolor (Gord. & Glend.) Lindl. ex. Hildebr., and Pseudotsuga menziesii (Mirb.) Franco. Grape wood lost the most weight while mesquite the least. Ganoderma lucidum isolates generally caused greater weight loss of all woods than did G. tsugae isolates. The range of the percent weight losses varied with the wood. Both Ganoderma species caused simultaneous decay in all woods. However, chemical analyses of the decayed blocks indicated that selective delignification by both species also occurred in grape and white fir blocks. Chemical analysis of the decayed oak blocks indicated the percentages of lignin and holocellulose were not statistically different from the controls. However, there was a trend towards delignification. The analyses of the Douglas-fir blocks indicated only simultaneous decay. Scanning electron microscopy demonstrated selective delignification and simultaneous decay of all woods tested. However, the extent of the delignification differed among the wood species. Delignification appeared mainly in areas of tracheids or fiber tracheids, while the rays were simultaneously decayed.


2014 ◽  
Vol 8 (28) ◽  
pp. 2724-2732 ◽  
Author(s):  
Braga Pereira Bento Cludia ◽  
Soares da Silva Juliana ◽  
Teixeira Rodrigues Marcelo ◽  
Catarina Megumi Kasuya Maria ◽  
Cuquetto Mantovani Hilrio

2007 ◽  
Vol 2007 ◽  
pp. 197-197
Author(s):  
Hassan Fazaeli ◽  
Seyed Ahmad Mirhadi

Biological de-lignification of straw by white-rot fungi seems a promising way of improving its nutritive value. The bio-conversion of lignocellulosic materials is circumscribed to the group of white-rot fungi, of which some species of Pleurotus are capable of producing upgraded spent-straws as ruminant feed (Fazaeli et al., 2004). Treating of cereal straw with white-rot fungi as animal feed was studied by several workers (Gupta et al., 1993; Zadrazil, 1997). However, most of the trials were conducted at in vitro stage and used cell wall degradation and in vitro digestibility as an index to evaluate the biological treatments. This experiment was conducted to study the effect of fungal treatment on the voluntary intake, in vivo digestibility and nutritive value index of wheat straw obtained from short-term and long-term solid state fermentation (SSF).


2005 ◽  
Vol 2005 ◽  
pp. 137-137
Author(s):  
E. M. Hodgson ◽  
M. D. Hale ◽  
H. M. Omed

Straw constitutes a vast, valuable, and under utilised agricultural by-product, which has a great potential for utilisation as an animal feedstuff. However, due to the way in which it is constructed, the digestible sugars, cellulose and hemicelluloses, are tightly chemically bound by heavily lignified cell walls which provide the wheat plant stem with its strength and structure, but in doing so greatly inhibit the digestibility and nutritive value of the material to ruminant animals. Therefore, the utilisation of this resource as an animal feed can only be realised effectively, if the nutritional and digestibility values of the material can be improved by the innovation and successful application of an effective treatment method, be that physical, chemical or biological. Previously devised methods of upgrading the digestibility and nutritive value of forages, with the possible exception of urea treatment, have proven either insufficient, environmentally unsound, or economically infeasible to those concerned, particularly those in developing world. Therefore, there is a distinct need to develop techniques which can avoid these pitfalls and still yield the desired results in the context of animal nutrition. Previous research has indicated that members of the genus Pleurotus white rot fungi, have great potential for application in the biological upgrading of wheat straw. Therefore, the objective of this work was to investigate biological techniques, using 3 strains of Pleurotus fungi which may have the potential to be utilised in the biological upgrading of wheat straw.


Sign in / Sign up

Export Citation Format

Share Document