scholarly journals Rheological behavior and texture of corn starch gels (Zea mays), arrowroot (Maranta arundinaceaea L.) and cassava (Manihote sculenta Crantz)

2020 ◽  
Vol 9 (12) ◽  
pp. e16191210868
Author(s):  
Mariana Silva Araújo ◽  
Marcus Vinícius da Rocha Afonso ◽  
Nathalia da Silva Rodrigues Mendes ◽  
Adriana Régia Marques de Souza ◽  
Miriam Fontes Araújo Silveira ◽  
...  

The main energy reserve in plants is starch. It is unique among polysaccarides for being in the form of granules. Starch granules are heterogeneous mixtures of amylose and amylopectin. Gelatinization and retrogradation of starch depend on the ratio of amylose to amylopectin, type of crystallinity, along with the sizes and structure of starch granules. The present work determined the rheological behavior in a dynamic state, in terms of sweeping frequency, time and temperature, in addition to the extrusion of corn starch gels and arrowroot and cassava starches. The rheological study demonstrated that in all samples analyzed, whether in a non-gelatinized liquid mixture or in the form of gels, behaved as non-Newtonian fluids independent of time. Non-gelatinized mixtures showed properties of dilating non-Newtonian fluids and the gels of pseudoplastic non-Newtonian fluids. Gels were classified as elastic, as it was found that the storage module is larger than the dissipation module with the storage module decreasing with increasing temperature, and thus temperature dependent. With increased temperature, the gels showed low stability which is characteristic of weak gels. The more elastic the gel, the greater its resistance and the corn starch gel was the most resistant when compared to arrowroot and cassava starch.

2007 ◽  
Vol 31 (5) ◽  
pp. 1443-1448 ◽  
Author(s):  
Dayane Rosalyn Izidoro ◽  
Bogdan Demczuk Junior ◽  
Charles Windson Isidoro Haminiuk ◽  
Maria Rita Sierakowski ◽  
Renato João Sossela de Freitas ◽  
...  

In this work, it was used starch obtained from green banana (Musa cavendishii) and commercial corn (Zea mays) starch in order to compare the granule morphology and the rheological behavior of these gel-starches. Images of starch granules morphology were obtained from scanning electron microscope (SEM). The banana starch granules presented an oval and ellipsoidal shape with irregular diameters. Neverthless, the granules of corn starch showed a poliedric shape, with different sizes. The rheological behavior of gel starch solutions showed a non-newtonian character with a pseudoplastic behavior. Herschel-Bulkley model gave a good description on the rheological behavior of the gel starch. Banana gel-starch solutions showed higher values of shear stress and apparent viscosity when compared with corn gel-starch solutions. A progressive decrease in shear stress and viscosity occurred with the addition of sodium chloride and sucrose.


1993 ◽  
Vol 39 (4) ◽  
pp. 367-376 ◽  
Author(s):  
T. A. McAllister ◽  
Y. Dong ◽  
L. J. Yanke ◽  
H. D. Bae ◽  
K.-J. Cheng ◽  
...  

The ruminal fungi Orpinomyces joyonii strain 19-2, Neocallimastix patriciarum strain 27, and Piromyces communis strain 22 were examined for their ability to digest cereal starch. All strains digested corn starch more readily than barley or wheat starch. Orpinomyces joyonii 19-2 exhibited the greatest propensity to digest starch in wheat and barley, whereas the digestion of these starches by N. patriciarum 27 and P. communis 22 was limited. Media ammonia concentrations were lower when fungal growth was evident, suggesting that all strains assimilate ammonia. Fungi formed extensive rhizoidal systems on the endosperm of corn, but O. joyonii 19-2 was the only strain to form such systems on the endosperm of wheat and barley. All strains penetrated the protein matrix of corn but did not penetrate starch granules. Starch granules from all three cereals were pitted, evidence of extensive digestion by extracellular amylases produced by O. joyonii 19-2. Similar pitting was observed on the surface of corn starch granules digested by N. patriciarum 27 and P. communis 22, but not on wheat and barley starch granules. The ability of ruminal fungi to digest cereal grains depends on both the strain of fungus and the type of grain. The extent to which fungi digest cereal grain in the rumen remains to be determined.Key words: ruminal fungi, cereal grain, starch digestion, ruminant.


2015 ◽  
Vol 67 (7-8) ◽  
pp. 709-715 ◽  
Author(s):  
Ibrahim O. Mohamed ◽  
Jobe Babucurr
Keyword(s):  

2015 ◽  
Vol 723 ◽  
pp. 701-704
Author(s):  
Jing Li

In this article, corn starch was modified by α-amylase with different hydrolytic time (30, 60, 90 and 120 min) and the effects of modification technology on its properties of viscosity, compound structure and mechanical were studied. The result showed that structure of modified starch was conserved with hydrolytic time increased, whereas tensile strength were increased and viscosity was decreased. The performance of modified starch that hydrolyzed by 30 min was better than others and pinholes were generated in the surface of starch granules


2008 ◽  
Vol 93 (2) ◽  
pp. 445-449 ◽  
Author(s):  
L. G. Lacerda ◽  
M. A. da Silva Carvalho Filho ◽  
I. M. Demiate ◽  
G. Bannach ◽  
M. Ionashiro ◽  
...  

2019 ◽  
Vol 124 ◽  
pp. 270-281 ◽  
Author(s):  
Mahdi Irani ◽  
Seyed M.A. Razavi ◽  
El-Sayed M. Abdel-Aal ◽  
Pierre Hucl ◽  
Carol Ann Patterson

2016 ◽  
Vol 10 (6) ◽  
pp. 2821-2829 ◽  
Author(s):  
Matthew J. Vaughan ◽  
Kasper van Wijk ◽  
David J. Prior ◽  
M. Hamish Bowman

Abstract. The elastic and anelastic properties of ice are of interest in the study of the dynamics of sea ice, glaciers, and ice sheets. Resonant ultrasound spectroscopy allows quantitative estimates of these properties and aids calibration of active and passive seismic data gathered in the field. The elastic properties and anelastic quality factor Q in laboratory-manufactured polycrystalline isotropic ice cores decrease (reversibly) with increasing temperature, but compressional-wave speed and attenuation prove most sensitive to temperature, indicative of pre-melting of the ice. This method of resonant ultrasound spectroscopy can be deployed in the field, for those situations where shipping samples is difficult (e.g. remote locations), or where the properties of ice change rapidly after extraction (e.g. in the case of sea ice).


1995 ◽  
Vol 47 (6) ◽  
pp. 223-228 ◽  
Author(s):  
Célia M. L. Franco ◽  
César F. Ciacco ◽  
Débora Q. Tavares

1995 ◽  
Vol 398 ◽  
Author(s):  
A.R. Guo ◽  
C.-S. Tu ◽  
Ruiwu Tao ◽  
R.S. Katiyar ◽  
Ruyan Guo ◽  
...  

ABSTRACTThe longitudinal (LO) and transverse (TO) A1 vibrational modes have been measured between 30-1200 cm−1 as a function of temperature (30–1240 K) for CsTiOAsO4 (CTA). The frequencies for all corresponding Raman components shifted to lower frequencies on increasing the temperature, however, there is no typical soft-mode like behavior observed in the measured frequency range. The relative intensities of the low frequency bands increase dramatically with increasing temperature due to high mobility of Cs+ ion. A higher symmetry structure taking place above 940K has been confirmed by changes in the phonon spectra.


Sign in / Sign up

Export Citation Format

Share Document