wheat starch
Recently Published Documents


TOTAL DOCUMENTS

1009
(FIVE YEARS 220)

H-INDEX

66
(FIVE YEARS 8)

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 207
Author(s):  
Jana van Rooyen ◽  
Senay Simsek ◽  
Samson Adeoye Oyeyinka ◽  
Marena Manley

Heat treatment is used as a pre-processing step to beneficially change the starch properties of wheat flour to enhance its utilisation in the food industry. Heat-treated wheat flour may provide improved eating qualities in final wheat-based products since flour properties predominantly determine the texture and mouthfeel. Dry heat treatment of wheat kernels or milled wheat products involves heat transfer through means of air, a fluidising medium, or radiation—often resulting in moisture loss. Heat treatment leads to changes in the chemical, structural and functional properties of starch in wheat flour by inducing starch damage, altering its molecular order (which influences its crystallinity), pasting properties as well as its retrogradation and staling behaviour. Heat treatment also induces changes in gluten proteins, which may alter the rheological properties of wheat flour. Understanding the relationship between heat transfer, the thermal properties of wheat and the functionality of the resultant flour is of critical importance to obtain the desired extent of alteration of wheat starch properties and enhanced utilisation of the flour. This review paper introduces dry heat treatment methods followed by a critical review of the latest published research on heat-induced changes observed in wheat flour starch chemistry, structure and functionality.


Author(s):  
Julia Tourtelot ◽  
Chloé Fourdrin ◽  
Jean Baptiste d'Espinose de Lacaillerie ◽  
Ann Bourgès ◽  
Emmanuel Keita

The restoration, the protection, or the creation of earthen buildings require improving the mechanical strength of the material. The first way to do that is to use inorganic additives, but these additives change the structural properties of earth and have a high carbon footprint. In contrast, the other way to consolidate is the use of organic additives such as vegetal derivatives that rearrange the minerals in the earth, with the lowest carbon footprint as they are from waste management. After preliminary tests with ten different organic additives from traditional recipes, we found that wheat starch improves the earth strength up to 50 %. In this study, we related the mechanical strengthening to the physicochemical interactions between clays and starch. We focus on three clays that represent the three main groups of clays: kaolinite, illite and montmorillonite. For this study, we mainly focused on compressive test and rheological tests. We showed that the improvement of the mechanical strength with starch is depending on clay nature and their chemistry. Then, we can recommend formulations based on the earth nature for new sustainable buildings. Furthermore, we can understand why it was an interesting way to use starch as a strengthening agent in traditional recipes and how it could be used to repair and protect buildings made of earthen material.


Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 147
Author(s):  
Lulu Cui ◽  
Jiwang Chen ◽  
Yuhuan Wang ◽  
Youling L. Xiong

Soy protein (SP), egg white protein (EP), and whey protein (WP) at 6% w/w were individually incorporated into the batter of a wheat starch (WS) and wheat gluten (WG) blend (11:1 w/w ratio). Moisture adsorption isotherms of WS and proteins and the viscosity, rheological behavior, and calorimetric properties of the batters were measured. Batter-breaded fish nuggets (BBFNs) were fried at 170 °C for 40 s followed by 190 °C for 30 s, and pick-up of BBFNs, thermogravimetric properties of crust, and fat absorption were determined. The moisture absorption capacity was the greatest for WS, followed by WG, SP, EP, and WP. The addition of SP significantly increased the viscosity and shear moduli (G″, G′) of batter and pick-up of BBFNs, while EP and WP exerted the opposite effect (p < 0.05). SP, EP, and WP raised WS gelatinization and protein denaturation temperatures and crust thermogravimetry temperature, but decreased enthalpy change (ΔH) and oily characteristics of fried BBFNs. These results indicate that hydrophilicity and hydration activity of the added proteins and their interactions with batter matrix starch and gluten reinforced the batter and the thermal stability of crust, thereby inhibiting fat absorption of the BBFNs during deep-fat frying.


Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 207
Author(s):  
Jiaojiao Liu ◽  
Huiping Xing ◽  
Yajun Zhou ◽  
Xiaolian Chao ◽  
Yuhu Li ◽  
...  

Paper acidification causes paper relics to undergo embrittlement and decay, to form dregs, and even to break upon a single touch; therefore, reinforcement and deacidification treatments are essential steps for paper conservation and to retard the deterioration and prolong the life of objects. Polymeric adhesives play an essential role in reinforcement and deacidification treatments, although it is not well studied. In this work, the effect of polymeric adhesives on the conservation process and their protective effects on acidified paper relics were studied. Firstly, three polymeric adhesives, including wheat starch paste, polyvinyl butyral (PVB), and polyvinyl alcohol (PVA), were selected as research objects. Subsequently, their effects on four popular conservation methods were further discussed, including traditional mounting, hot-melt with silk net, alcohol-soluble cotton mesh, and water-soluble cotton mesh. Additionally, as an example, the reversibility and long-term durability of water-soluble adhesive PVA-217 were assessed. Using a computer measured and controlled folding endurance tester, pendulum tensile strength tester, tear tester, burst tester, FT-IR, video optical contact angle tester, and other instruments, the conservation application of water-soluble adhesives in paper relics was evaluated. This study provides a scientific basis and experimental data for the application of polymeric adhesives in the conservation of paper relics.


2021 ◽  
Vol 12 (1) ◽  
pp. 33
Author(s):  
Dorota Ogrodowska ◽  
Iwona Zofia Konopka ◽  
Małgorzata Tańska ◽  
Waldemar Brandt ◽  
Beata Piłat

The aim of the study is to compare selected carbohydrates that differed in the glycaemic index: maltodextrin, three native starches (wheat, rice, maize), and two disaccharides (trehalose and lactose) used to encapsulation of model oil (in this case cold-pressed pumpkin oil). Encapsulation efficiency of pumpkin oil by spray drying, size of obtained capsules, oxidative stability of encapsulated oil, and retention of tocopherols, squalene, and sterols in surface and core material of capsules were determined. It was found that encapsulation efficiency varied from 35% for rice starch to 68–71% for wheat starch, maltodextrin, and lactose. The bulk density of capsules was independent of the used carbohydrate type (189–198 kg/m3), while their size was significantly lower for samples of pumpkin oil encapsulated in native starches (over 2 times compared to capsules with trehalose). Of the best lipid capturing agents (native wheat starch, maltodextrin, and lactose), wheat starch mainly bound tocopherols, squalene, and sterols to the capsule surface, while lactose to the core material of the capsules (35.5–81.2%). Among tested carbohydrates, native wheat starch acted as the best antioxidant agent (oxidative stability was 15.1 h vs. 9.4 h for pure pumpkin oil).


2021 ◽  
pp. 107433
Author(s):  
Travest J. Woodbury ◽  
Erica Grush ◽  
Matthew C. Allan ◽  
Lisa J. Mauer
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document