scholarly journals Combined Use of Automatic Tube Voltage Selection and Current Modulation with Iterative Reconstruction for CT Evaluation of Small Hypervascular Hepatocellular Carcinomas: Effect on Lesion Conspicuity and Image Quality

2015 ◽  
Vol 16 (3) ◽  
pp. 531 ◽  
Author(s):  
Peijie Lv ◽  
Jie Liu ◽  
Rui Zhang ◽  
Yan Jia ◽  
Jianbo Gao
2015 ◽  
Author(s):  
Fengdan Wang ◽  
Yan Zhang ◽  
Zhengyu Jin ◽  
Richard Zwar

Objective. To explore whether the image noises and the metal artifacts could be further managed by the combined use of two technologies, the adaptive statistical iterative reconstruction (ASIR) and the monochromatic imaging generated by gemstone spectral imaging (GSI) dual-energy CT. Materials and Methods. Fifty-one patients with 318 spinal pedicle screws were prospectively scanned with dual energy CT by using fast kV-switching GSI between 80 and 140 kVp. The monochromatic GSI images at 110 keV were reconstructed either without ASIR or with ASIR of various levels (30%, 50%, 70% and 100%). For these five sets of images, both objective and subjective image quality assessments were performed to evaluate the image quality. Results. With objective image quality assessment, the metal artifacts (measured by an artifacts index) significantly decreased when increasing levels of ASIR was utilized (p < 0.001). Moreover, adding ASIR to GSI also decreased the image noise (p < 0.001) and improved the signal-to-noise ratio (SNR, p < 0.001). With subjective image quality analysis, the inter-reader agreements were good, with intra-class correlation coefficients (ICC) of 0.89 to 0.99. Meanwhile, the visualization of the peri-implant soft tissue was improved at higher ASIR levels (p < 0.001). Conclusion. Combined use of ASIR and GSI is shown to decrease the image noise and improve the image quality in post-spinal fusion CT scans. Optimal results were achieved with ASIR levels of over 70%.


2017 ◽  
Vol 59 (5) ◽  
pp. 553-559 ◽  
Author(s):  
Yun Hye Ju ◽  
Geewon Lee ◽  
Ji Won Lee ◽  
Seung Baek Hong ◽  
Young Ju Suh ◽  
...  

Background Reducing radiation dose inevitably increases image noise, and thus, it is important in low-dose computed tomography (CT) to maintain image quality and lesion detection performance. Purpose To assess image quality and lesion conspicuity of ultra-low-dose CT with model-based iterative reconstruction (MBIR) and to determine a suitable protocol for lung screening CT. Material and Methods A total of 120 heavy smokers underwent lung screening CT and were randomly and equally assigned to one of five groups: group 1 = 120 kVp, 25 mAs, with FBP reconstruction; group 2 = 120 kVp, 10 mAs, with MBIR; group 3 = 100 kVp, 15 mAs, with MBIR; group 4 = 100 kVp, 10 mAs, with MBIR; and group 5 = 100 kVp, 5 mAs, with MBIR. Two radiologists evaluated intergroup differences with respect to radiation dose, image noise, image quality, and lesion conspicuity using the Kruskal–Wallis test and the Chi-square test. Results Effective doses were 61–87% lower in groups 2–5 than in group 1. Image noises in groups 1 and 5 were significantly higher than in the other groups ( P < 0.001). Overall image quality was best in group 1, but diagnostic acceptability of overall image qualities in groups 1–3 was not significantly different (all P values > 0.05). Lesion conspicuities were similar in groups 1–4, but were significantly poorer in group 5. Conclusion Lung screening CT with MBIR obtained at 100 kVp and 15 mAs enables a ∼60% reduction in radiation dose versus low-dose CT, while maintaining image quality and lesion conspicuity.


2018 ◽  
Vol 60 (2) ◽  
pp. 177-185
Author(s):  
Xiangying Du ◽  
Bin Lu ◽  
Daoyu Hu ◽  
Bin Song ◽  
Kuncheng Li

Background Concern about radiation exposure is leading to an increasing interest in low-concentration contrast medium administration. Purpose To evaluate the image quality and safety profile after administration of iodixanol 270 mg I/mL at 100-kVp tube voltage with iterative reconstruction in subjects undergoing computed tomography angiography (CTA). Material and Methods Patients who completed CTA examination using iodixanol 270 mg I/mL and 100-kVp tube voltage along with iterative reconstruction for coronary, aortic, head and neck, renal, or pulmonary arteries were included. Image quality was qualitatively and quantitatively evaluated. Incidence of adverse events (AEs) and adverse drug reactions (ADRs) within seven days and radiation dose were also analyzed. Results A total of 4513 individuals in 42 centers in China were enrolled, among which 4367 were included in efficacy analysis. The mean image quality score was 4.8 ± 0.45 across all arteries (all above 4.6) and 99.7% of the individuals’ images were classified as evaluable. The CT attenuation, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) in the regions of interest (ROIs) were 431.79 ± 99.018, 18.29 ± 11.947, and 28.21 ± 19.535 HU, respectively. Of all the participants, 68 (1.5%) and 65 (1.4%) experienced AEs and ADRs, respectively. No serious AEs or AEs leading to discontinuation occurred. The average effective radiation dose was 3.13 ± 2.550 mSv. Conclusion Iodixanol 270 mg I/mL in combination with 100-kVp tube voltage and iterative reconstruction could be safely applied in CTA and yield high-quality and evaluable images with reduced radiation dose.


Sign in / Sign up

Export Citation Format

Share Document