scholarly journals Estimation of an Examinee's Ability in the Web-Based Computerized Adaptive Testing Program IRT-CAT

Author(s):  
Yoon-Hwan Lee ◽  
Jung-Ho Park ◽  
In-Yong Park

We developed a program to estimate an examinee's ability in order to provide freely available access to a web-based computerized adaptive testing (CAT) program. We used PHP and Java Script as the program languages, PostgresSQL as the database management system on an Apache web server and Linux as the operating system. A system which allows for user input and searching within inputted items and creates tests was constructed. We performed an ability estimation on each test based on a Rasch model and 2- or 3-parametric logistic models. Our system provides an algorithm for a web-based CAT, replacing previous personal computer-based ones, and makes it possible to estimate an examinee?占퐏 ability immediately at the end of test.

2021 ◽  
Author(s):  
Bryant A Seamon ◽  
Steven A Kautz ◽  
Craig A Velozo

Abstract Objective Administrative burden often prevents clinical assessment of balance confidence in people with stroke. A computerized adaptive test (CAT) version of the Activities-specific Balance Confidence Scale (ABC CAT) can dramatically reduce this burden. The objective of this study was to test balance confidence measurement precision and efficiency in people with stroke with an ABC CAT. Methods We conducted a retrospective cross-sectional simulation study with data from 406 adults approximately 2-months post-stroke in the Locomotor-Experience Applied Post-Stroke (LEAPS) trial. Item parameters for CAT calibration were estimated with the Rasch model using a random sample of participants (n = 203). Computer simulation was used with response data from remaining 203 participants to evaluate the ABC CAT algorithm under varying stopping criteria. We compared estimated levels of balance confidence from each simulation to actual levels predicted from the Rasch model (Pearson correlations and mean standard error (SE)). Results Results from simulations with number of items as a stopping criterion strongly correlated with actual ABC scores (full item, r = 1, 12-item, r = 0.994; 8-item, r = 0.98; 4-item, r = 0.929). Mean SE increased with decreasing number of items administered (full item, SE = 0.31; 12-item, SE = 0.33; 8-item, SE = 0.38; 4-item, SE = 0.49). A precision-based stopping rule (mean SE = 0.5) also strongly correlated with actual ABC scores (r = .941) and optimized the relationship between number of items administrated with precision (mean number of items 4.37, range [4–9]). Conclusions An ABC CAT can determine accurate and precise measures of balance confidence in people with stroke with as few as 4 items. Individuals with lower balance confidence may require a greater number of items (up to 9) and attributed to the LEAPS trial excluding more functionally impaired persons. Impact Statement Computerized adaptive testing can drastically reduce the ABC’s test administration time while maintaining accuracy and precision. This should greatly enhance clinical utility, facilitating adoption of clinical practice guidelines in stroke rehabilitation. Lay Summary If you have had a stroke, your physical therapist will likely test your balance confidence. A computerized adaptive test version of the ABC scale can accurately identify balance with as few as 4 questions, which takes much less time.


This chapter presents the architecture of Web-based intelligent English instruction system CSIEC (Computer Simulation in Educational Communication) and illustrates its important components with examples: dialogue simulation functions including multiple roles talk show and user participating roles play, vocabulary exercises including crossword, single choice questions and cloze questions, listening, reading comprehension, grammar exercises, reading aloud, individual learner portfolios, collaborative learning, the teacher's management function, feedback, and so on. The system's function of instant feedback to every student and statistical analysis upon all students' responses to question answers characterizes this system as a learner response system. The Web-based system can be browsed not only by the user through traditional personal computers but also through fashionable tablet computers. Besides the Web-based system, a standalone vocabulary learning and assessment system for Windows OS is developed. Its functions are also introduced.


Author(s):  
Christopher Walton

At the start of this book we outlined the challenges of automatic computer based processing of information on the Web. These numerous challenges are generally referred to as the ‘vision’ of the Semantic Web. From the outset, we have attempted to take a realistic and pragmatic view of this vision. Our opinion is that the vision may never be fully realized, but that it is a useful goal on which to focus. Each step towards the vision has provided new insights on classical problems in knowledge representation, MASs, and Web-based techniques. Thus, we are presently in a significantly better position as a result of these efforts. It is sometimes difficult to see the purpose of the Semantic Web vision behind all of the different technologies and acronyms. However, the fundamental purpose of the Semantic Web is essentially large scale and automated data integration. The Semantic Web is not just about providing a more intelligent kind of Web search, but also about taking the results of these searches and combining them in interesting and useful ways. As stated in Chapter 1, the possible applications for the Semantic Web include: automated data mining, e-science experiments, e-learning systems, personalized newspapers and journals, and intelligent devices. The current state of progress towards the Semantic Web vision is summarized in Figure 8.1. This figure shows a pyramid with the human-centric Web at the bottom, sometimes termed the Syntactic Web, and the envisioned Semantic Web at the top. Throughout this book, we have been moving upwards on this pyramid, and it should be clear that a great deal of progress that has been made towards the goal. This progress is indicated by the various stages of the pyramid, which can be summarized as follows: • The lowest stage on the pyramid is the basic Web that should be familiar to everyone. This Web of information is human-centric and contains very little automation. Nonetheless, the Web provides the basic protocols and technologies on which the Semantic Web is founded. Furthermore, the information which is represented on the Web will ultimately be the source of knowledge for the Semantic Web.


Author(s):  
Anggit Damaz Istoko ◽  
Aulia Faqih Rifa'i

At a recent time, a computer-based queue machine, which is using the computer as both a client and a server, is rated to be less practical and inefficient. In this case, the queue machine will need a number of the computer as many as the locket and the network configuration. Given these points, the aim of this research is to build a practice and applicable queue machine. In the development of this system, the writer adopted the prototyping method. Acquiring Arduino Uno to convert the analog signal become a digital which will be shown in the LED P10, utilizing NodeMCU ESP8266 as a WiFi module, and adapting Raspberry Pi 3 as a server, this queue system expected to solve the problem before. In addition, to build the web, this queue system is using javascript and node.js as the software. This research derives a practice, easy to use, and portable queue machine because it uses wifi for their connection.


2018 ◽  
Author(s):  
Linda Peute ◽  
Thom Scheeve ◽  
Monique Jaspers

BACKGROUND There is a need for shorter-length assessments that capture patient questionnaire data while attaining high data quality without an undue response burden on patients. Computerized adaptive testing (CAT) and classification and regression tree (CART) methods have the potential to meet these needs and can offer attractive options to shorten questionnaire lengths. OBJECTIVE The objective of this study was to test whether CAT or CART was best suited to reduce the number of questionnaire items in multiple domains (eg, anxiety, depression, quality of life, and social support) used for a needs assessment procedure (NAP) within the field of cardiac rehabilitation (CR) without the loss of data quality. METHODS NAP data of 2837 CR patients from a multicenter Cardiac Rehabilitation Decision Support System (CARDSS) Web-based program was used. Patients used a Web-based portal, MyCARDSS, to provide their data. CAT and CART were assessed based on their performances in shortening the NAP procedure and in terms of sensitivity and specificity. RESULTS With CAT and CART, an overall reduction of 36% and 72% of NAP questionnaire length, respectively, was achieved, with a mean sensitivity and specificity of 0.765 and 0.817 for CAT, 0.777 and 0.877 for classification trees, and 0.743 and 0.40 for regression trees, respectively. CONCLUSIONS Both CAT and CART can be used to shorten the questionnaires of the NAP used within the field of CR. CART, however, showed the best performance, with a twice as large overall decrease in the number of questionnaire items of the NAP compared to CAT and the highest sensitivity and specificity. To our knowledge, our study is the first to assess the differences in performance between CAT and CART for shortening questionnaire lengths. Future research should consider administering varied assessments of patients over time to monitor their progress in multiple domains. For CR professionals, CART integrated with MyCARDSS would provide a feedback loop that informs the rehabilitation progress of their patients by providing real-time patient measurements.


2012 ◽  
Vol 17 (1-2) ◽  
pp. 61-68
Author(s):  
Ryszard Gmoch

Abstract New trends relating to computer-based testing of learners’ achievements are presented in the paper. It describes adaptive testing methods and results of studies in this problem area. Essential questions connected with the Item Response Theory (IRT) were also discussed. The presented data indicate that computer-based adaptive testing should be popularized in Poland to its fullest extent.


2011 ◽  
Vol 13 (3) ◽  
pp. e61 ◽  
Author(s):  
Tsair-Wei Chien ◽  
Wen-Chung Wang ◽  
Sheng-Yun Huang ◽  
Wen-Pin Lai ◽  
Julie Chi Chow

10.2196/12509 ◽  
2020 ◽  
Vol 22 (1) ◽  
pp. e12509
Author(s):  
Linda Peute ◽  
Thom Scheeve ◽  
Monique Jaspers

Background There is a need for shorter-length assessments that capture patient questionnaire data while attaining high data quality without an undue response burden on patients. Computerized adaptive testing (CAT) and classification and regression tree (CART) methods have the potential to meet these needs and can offer attractive options to shorten questionnaire lengths. Objective The objective of this study was to test whether CAT or CART was best suited to reduce the number of questionnaire items in multiple domains (eg, anxiety, depression, quality of life, and social support) used for a needs assessment procedure (NAP) within the field of cardiac rehabilitation (CR) without the loss of data quality. Methods NAP data of 2837 CR patients from a multicenter Cardiac Rehabilitation Decision Support System (CARDSS) Web-based program was used. Patients used a Web-based portal, MyCARDSS, to provide their data. CAT and CART were assessed based on their performances in shortening the NAP procedure and in terms of sensitivity and specificity. Results With CAT and CART, an overall reduction of 36% and 72% of NAP questionnaire length, respectively, was achieved, with a mean sensitivity and specificity of 0.765 and 0.817 for CAT, 0.777 and 0.877 for classification trees, and 0.743 and 0.40 for regression trees, respectively. Conclusions Both CAT and CART can be used to shorten the questionnaires of the NAP used within the field of CR. CART, however, showed the best performance, with a twice as large overall decrease in the number of questionnaire items of the NAP compared to CAT and the highest sensitivity and specificity. To our knowledge, our study is the first to assess the differences in performance between CAT and CART for shortening questionnaire lengths. Future research should consider administering varied assessments of patients over time to monitor their progress in multiple domains. For CR professionals, CART integrated with MyCARDSS would provide a feedback loop that informs the rehabilitation progress of their patients by providing real-time patient measurements.


Sign in / Sign up

Export Citation Format

Share Document