scholarly journals Foraging behaviour and habitat selection of the little penguin Eudyptula minor during early chick rearing in Bass Strait, Australia

2008 ◽  
Vol 366 ◽  
pp. 293-303 ◽  
Author(s):  
AJ Hoskins ◽  
P Dann ◽  
Y Ropert-Coudert ◽  
A Kato ◽  
A Chiaradia ◽  
...  
2003 ◽  
Vol 9 (1) ◽  
pp. 141-153 ◽  
Author(s):  
Mayumi Sakuragi ◽  
Hiromasa Igota ◽  
Hiroyuki Uno ◽  
Koichi Kaji ◽  
Masami Kaneko ◽  
...  

Paléorient ◽  
1981 ◽  
Vol 7 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Amiel Brosh ◽  
M. Ohel

Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2454
Author(s):  
Yue Sun ◽  
Yanze Yu ◽  
Jinhao Guo ◽  
Minghai Zhang

Single-scale frameworks are often used to analyze the habitat selections of species. Research on habitat selection can be significantly improved using multi-scale models that enable greater in-depth analyses of the scale dependence between species and specific environmental factors. In this study, the winter habitat selection of red deer in the Gogostaihanwula Nature Reserve, Inner Mongolia, was studied using a multi-scale model. Each selected covariate was included in multi-scale models at their “characteristic scale”, and we used an all subsets approach and model selection framework to assess habitat selection. The results showed that: (1) Univariate logistic regression analysis showed that the response scale of red deer to environmental factors was different among different covariate. The optimal scale of the single covariate was 800–3200 m, slope (SLP), altitude (ELE), and ratio of deciduous broad-leaved forests were 800 m in large scale, except that the farmland ratio was 200 m in fine scale. The optimal scale of road density and grassland ratio is both 1600 m, and the optimal scale of net forest production capacity is 3200 m; (2) distance to forest edges, distance to cement roads, distance to villages, altitude, distance to all road, and slope of the region were the most important factors affecting winter habitat selection. The outcomes of this study indicate that future studies on the effectiveness of habitat selections will benefit from multi-scale models. In addition to increasing interpretive and predictive capabilities, multi-scale habitat selection models enhance our understanding of how species respond to their environments and contribute to the formulation of effective conservation and management strategies for ungulata.


2019 ◽  
Vol 98 ◽  
pp. 111-118
Author(s):  
Samukelisiwe P. Ngcobo ◽  
Amy-Leigh Wilson ◽  
Colleen T. Downs

Author(s):  
Svein Dale

AbstractIn boreal forests, food supplies typically have cyclic variations, and many species here fluctuate in numbers from year to year. One group of species showing large variations in population size is birds specialized on seeds from masting trees. Here, I analyze spatial patterns of a mass occurrence and habitat selection of the Common Redpoll (Carduelis flammea) during the breeding season in southeastern Norway in 2020 after a year with large seed crops from Norway Spruce (Picea abies) and Downy Birch (Betula pubescens). I found that Common Redpoll numbers increased with elevation and towards the northwest. Numbers were also strongly and positively correlated with snow depth in early April when snow was present mainly above 400 m elevation. Sites with snow cover in early April (30% of all sites) held 96.4% of all individuals recorded. Field observations indicated that Common Redpolls foraged extensively for spruce seeds on the snow until the end of May when young were independent. I suggest that the mass occurrence was due to a unique combination of exceptionally large seed crops of two tree species coinciding in the same year. The masting produced large amounts of food both for overwintering (birch seeds) and for breeding (spruce seeds), and during the breeding season snow cover facilitated access to food resources. Dependency of Common Redpolls on snow cover suggests that climate change may negatively impact some seed-eaters in boreal regions. On the other hand, higher temperatures may induce more frequent masting which may be beneficial for seed-eaters. Thus, climate change is likely to lead to complex ecosystem changes in areas where snow cover may disappear.


2016 ◽  
Vol 27 (3) ◽  
pp. 117-122 ◽  
Author(s):  
Wan Fatma Zuharah ◽  
◽  
Nik Fadzly ◽  
Wilson Kang Wei Ong ◽  
Zarul Hazrin Hashim ◽  
...  

2004 ◽  
Vol 82 (6) ◽  
pp. 922-933 ◽  
Author(s):  
D Gallant ◽  
C H Bérubé ◽  
E Tremblay ◽  
L Vasseur

The objective of this study was to examine the foraging behaviour of the beaver (Castor canadensis Kuhl, 1820) and to explain its selection of terrestrial woody plant species according to central place foraging theory. Limitations in variety of food items in most studies with regard to size and (or) distance from the central place and information on availability of forage choices give a partial view of the subject. In this study, the theory is tested in a natural environment with high variability in food items with regard to these factors. Foraging choices by beavers were inspected by measuring variables on cut and uncut trees of every species encountered within 1 m of trail systems made by 25 beaver colonies in Kouchibouguac National Park in New Brunswick, Canada, thereby quantifying the availability of the different food items. The effect of habitat quality (food availability) on the foraging behaviour of beavers was also tested. The results of this study suggest that with increasing distance from the pond, beavers in high-quality habitats selected fewer, but larger, trees and are more species selective. This selectivity was diminished in habitats of lower quality. The results of this study are consistent with the predictions of the central foraging theory.


Sign in / Sign up

Export Citation Format

Share Document