scholarly journals Herbivory by reef fishes and the production of dimethyl sulfide and acrylic acid

1994 ◽  
Vol 112 ◽  
pp. 67-74 ◽  
Author(s):  
JWH Dacey ◽  
GM King ◽  
PS Lobel
2006 ◽  
Vol 51 (5) ◽  
pp. 2468-2471 ◽  
Author(s):  
Claire Evans ◽  
Gillian Malin ◽  
William H. Wilson ◽  
Peter S. Liss

2020 ◽  
Vol 8 (38) ◽  
pp. 13368-13374
Author(s):  
Muhammad Umair Khan ◽  
Gul Hassan ◽  
Jinho Bae

This paper proposes a novel soft ionic liquid (IL) electrically functional device that displays resistive memory characteristics using poly(acrylic acid) partial sodium salt (PAA-Na+:H2O) solution gel and sodium hydroxide (NaOH) in a thin polydimethylsiloxane (PDMS) cylindrical microchannel.


2020 ◽  
Vol 65 (1) ◽  
pp. 28-41
Author(s):  
Marwa Aly Ahmed ◽  
Júlia Erdőssy ◽  
Viola Horváth

Multifunctional nanoparticles have been shown earlier to bind certain proteins with high affinity and the binding affinity could be enhanced by molecular imprinting of the target protein. In this work different initiator systems were used and compared during the synthesis of poly (N-isopropylacrylamide-co-acrylic acid-co-N-tert-butylacrylamide) nanoparticles with respect to their future applicability in molecular imprinting of lysozyme. The decomposition of ammonium persulfate initiator was initiated either thermally at 60 °C or by using redox activators, namely tetramethylethylenediamine or sodium bisulfite at low temperatures. Morphology differences in the resulting nanoparticles have been revealed using scanning electron microscopy and dynamic light scattering. During polymerization the conversion of each monomer was followed in time. Striking differences were demonstrated in the incorporation rate of acrylic acid between the tetramethylethylenediamine catalyzed initiation and the other systems. This led to a completely different nanoparticle microstructure the consequence of which was the distinctly lower lysozyme binding affinity. On the contrary, the use of sodium bisulfite activation resulted in similar nanoparticle structural homogeneity and protein binding affinity as the thermal initiation.


2020 ◽  
Vol 649 ◽  
pp. 125-140
Author(s):  
DS Goldsworthy ◽  
BJ Saunders ◽  
JRC Parker ◽  
ES Harvey

Bioregional categorisation of the Australian marine environment is essential to conserve and manage entire ecosystems, including the biota and associated habitats. It is important that these regions are optimally positioned to effectively plan for the protection of distinct assemblages. Recent climatic variation and changes to the marine environment in Southwest Australia (SWA) have resulted in shifts in species ranges and changes to the composition of marine assemblages. The goal of this study was to determine if the current bioregionalisation of SWA accurately represents the present distribution of shallow-water reef fishes across 2000 km of its subtropical and temperate coastline. Data was collected in 2015 using diver-operated underwater stereo-video surveys from 7 regions between Port Gregory (north of Geraldton) to the east of Esperance. This study indicated that (1) the shallow-water reef fish of SWA formed 4 distinct assemblages along the coast: one Midwestern, one Central and 2 Southern Assemblages; (2) differences between these fish assemblages were primarily driven by sea surface temperature, Ecklonia radiata cover, non-E. radiata (canopy) cover, understorey algae cover, reef type and reef height; and (3) each of the 4 assemblages were characterised by a high number of short-range Australian and Western Australian endemic species. The findings from this study suggest that 4, rather than the existing 3 bioregions would more effectively capture the shallow-water reef fish assemblage patterns, with boundaries having shifted southwards likely associated with ocean warming.


Sign in / Sign up

Export Citation Format

Share Document