Ecological niche modelling of cold-water corals in the Southern Ocean (N Antarctic), present distribution and future projections due to temperature changes

2019 ◽  
Vol 628 ◽  
pp. 73-93
Author(s):  
S Chaabani ◽  
PJ López-González ◽  
P Casado-Amezua ◽  
H Pehlke ◽  
L Weber ◽  
...  
2016 ◽  
Vol 107 (4) ◽  
pp. 419-430 ◽  
Author(s):  
B.M. Carvalho ◽  
E.F. Rangel ◽  
M.M. Vale

AbstractVector-borne diseases are exceptionally sensitive to climate change. Predicting vector occurrence in specific regions is a challenge that disease control programs must meet in order to plan and execute control interventions and climate change adaptation measures. Recently, an increasing number of scientific articles have applied ecological niche modelling (ENM) to study medically important insects and ticks. With a myriad of available methods, it is challenging to interpret their results. Here we review the future projections of disease vectors produced by ENM, and assess their trends and limitations. Tropical regions are currently occupied by many vector species; but future projections indicate poleward expansions of suitable climates for their occurrence and, therefore, entomological surveillance must be continuously done in areas projected to become suitable. The most commonly applied methods were the maximum entropy algorithm, generalized linear models, the genetic algorithm for rule set prediction, and discriminant analysis. Lack of consideration of the full-known current distribution of the target species on models with future projections has led to questionable predictions. We conclude that there is no ideal ‘gold standard’ method to model vector distributions; researchers are encouraged to test different methods for the same data. Such practice is becoming common in the field of ENM, but still lags behind in studies of disease vectors.


2009 ◽  
Author(s):  
Renata L Stange ◽  
Fabiana S Santana ◽  
Bruna Buani ◽  
Pedro L. P Correa ◽  
Antonio M Saraiva

2014 ◽  
Vol 176 (3) ◽  
pp. 332-348 ◽  
Author(s):  
Verônica A. Thode ◽  
Gustavo A. Silva-Arias ◽  
Caroline Turchetto ◽  
Ana Lúcia A. Segatto ◽  
Geraldo Mäder ◽  
...  

2021 ◽  
Author(s):  
Pascaline Salvado ◽  
Pere Aymerich Boixader ◽  
Josep Parera ◽  
Albert Vila Bonfill ◽  
Maria Martin ◽  
...  

Species endemic to restricted geographical ranges represent a particular conservation issue, be it for their heritage interest. In a context of global change, this is particularly the case for plants which belong to high-mountain ecosystems and, because of their ecological requirements, are doomed to survive or disappear on their "sky islands". The Pyrenean Larkspur (Delphinium montanum, Ranunculaceae) is endemic to the Eastern part of the Pyrenees (France and Spain). It is now only observable at a dozen of localities and some populations show signs of decline, such as a recurrent lack of flowering. Implementing population genomic approach (e.g. RAD-seq like) is particularly useful to understand genomic patterns of diversity and differentiation in order to provide recommendations in term of conservation. However, it remains challenging for species such as D. montanum that are autotetraploid with a large genome size (1C-value > 10 pg) as most methods currently available were developed for diploid species. A Bayesian framework able to call genotypes with uncertainty allowed us to assess genetic diversity and population structure in this system. Our results show evidence for inbreeding (mean GIS = 0.361) within all the populations and substantial population structure (mean GST = 0.403) at the metapopulation level. In addition to a lack of connectivity between populations, spatial projections of Ecological Niche Modelling analyses under different climatic scenarios predict a dramatic decrease of suitable habitat for D. montanum in the future. Based on these results, we discuss the relevance and feasibility of different conservation measures.


Sign in / Sign up

Export Citation Format

Share Document