scholarly journals Comparative modeling of the H4-H5 loop of the α2-isoform of Na+/K+-ATPase α-subunit in the E1 conformation

2007 ◽  
pp. S143-S151
Author(s):  
G Tejral ◽  
L Koláčná ◽  
A Kotyk ◽  
E Amler

Restraint-based comparative modeling was used for calculation and visualization of the H4-H5-loop of Na+/K+-ATPase from mouse brain (Mus musculus, adult male brain, alpha2-isoform) between the amino acid residues Cys 336 and Arg 758 in the E1 conformation The structure consists of two well separated parts. The N-domain is formed by a seven-stranded antiparallel beta-sheet with two additional beta-strands and five alpha-helices sandwiching it, the P-domain is composed of a typical Rossman fold. The ATP-binding site was found on the N-domain to be identical in both alpha2- and alpha1-isoforms. The phosphorylation Asp 369 residue was found in the central part of the P-domain, located at the C-terminal end of the central beta-sheet. The distance between the alpha-carbon of Phe 475 at the ATP-binding site and the alpha-carbon of Asp 369 at the phosphorylation site is 3.22 nm. A hydrogen bond between the oxygen atom of Asp 369 and the nitrogen atom of Lys 690 was clearly detected and assumed to play a key role in maintaining the proper structure of the phosphorylaton site in E1 conformation.

2017 ◽  
Author(s):  
Gracian Tejral ◽  
Bruno Sopko ◽  
Alois Necas ◽  
Wilhelm Schoner ◽  
Evzen Amler

Hydrolysis of ATP by Na+/K+-ATPase, a P-Type ATPase, catalyzing active Na+ and K+ transport through cellular membranes leads transiently to a phosphorylation of its catalytical α-subunit. Surprisingly, 3-dimensional molecular structure analysis of P-type ATPases reveals that binding of ATP to the N-domain connected by a hinge to the P-domain is much too far away from the Asp369 to allow the transfer of ATP’s terminal phosphate to its aspartyl-phosphorylation site. In order to get information how the transfer of the γ‑phosphate group of ATP to the Asp369 is achieved, analogous molecular modeling of the M4-M5 loop of ATPase was performed using the crystal data of Na+/K+-ATPase of different species. Analogous molecular modeling of the cytoplasmic loop between Thr338 and Ile760 of the α2-subunit of Na+/K+-ATPase and the analysis of distances between the ATP binding site and phosphorylation site revealed the existence of 2 ATP binding sites in the open conformation, the first one close to Phe475 in the N-domain, the other one close to Asp369 in the P-domain. However, binding of Mg2+•ATP to any of these sites in the “open conformation” may not lead to phosphorylation of Asp369. Additional conformations of the cytoplasmic loop were found wobbling between “open conformation” <==> “semi-open conformation <==> “closed conformation” in the absence of 2Mg2+•ATP. The cytoplasmic loop’s conformational change to the “semi-open conformation” -- characterized by a hydrogen bond between Arg543 and Asp611 -- triggers by binding of 2Mg2+•ATP to a single ATP site and conversion to the “closed conformation” the phosphorylation of Asp369 in the P-domain, and hence the start of Na+/K+-activated ATP hydrolysis.


1998 ◽  
Vol 334 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Karin HAUSER ◽  
Nada PAVLOVIC ◽  
Roland KISSMEHL ◽  
Helmut PLATTNER

A cDNA encoding the gene for a sarco(endo)plasmic reticulum-type Ca2+-ATPase (SERCA) was isolated from a cDNA library of Paramecium tetraurelia by using degenerated primers according to conserved domains of SERCA-type ATPases. The identified nucleotide sequence (PtSERCA) is 3114 nucleotides in length with an open reading frame of 1037 amino acids. An intron of only 22 nucleotides occurs. Homology searches for the deduced amino acid sequence revealed 38–49% similarity to SERCA-type ATPases from organisms ranging from protozoans to mammals, with no more similarity to some parasitic protozoa of the same phylum. The calculated molecular mass of the encoded protein is 114.7 kDa. It contains the typical 10 transmembrane domains of SERCA-type ATPases and other conserved domains, such as the phosphorylation site and the ATP binding site. However, there are no binding sites for phospholamban and thapsigargin present in the PtSERCA. Antibodies raised against a cytoplasmic loop peptide between the phosphorylation site and the ATP binding site recognize on Western blots a protein of 106 kDa, exclusively in the fraction of sub-plasmalemmal calcium stores (‘alveolar sacs’). In immunofluorescence studies the antibodies show labelling exclusively in the cell cortex of permeabilized cells in a pattern characteristic of the arrangement of alveolar sacs. When alveolar sacs where tested for phosphoenzyme-intermediate formation a phosphoprotein of the same molecular mass (106 kDa) could be identified. The nucleotide sequence data reported will appear in the EMBL, GenBank and DDBJ Nucleotide Sequence Databases under the accession number Y17496.


2017 ◽  
Author(s):  
Gracian Tejral ◽  
Bruno Sopko ◽  
Alois Necas ◽  
Wilhelm Schoner ◽  
Evzen Amler

Hydrolysis of ATP by Na+/K+-ATPase, a P-Type ATPase, catalyzing active Na+ and K+ transport through cellular membranes leads transiently to a phosphorylation of its catalytical α-subunit. Surprisingly, 3-dimensional molecular structure analysis of P-type ATPases reveals that binding of ATP to the N-domain connected by a hinge to the P-domain is much too far away from the Asp369 to allow the transfer of ATP’s terminal phosphate to its aspartyl-phosphorylation site. In order to get information how the transfer of the γ‑phosphate group of ATP to the Asp369 is achieved, analogous molecular modeling of the M4-M5 loop of ATPase was performed using the crystal data of Na+/K+-ATPase of different species. Analogous molecular modeling of the cytoplasmic loop between Thr338 and Ile760 of the α2-subunit of Na+/K+-ATPase and the analysis of distances between the ATP binding site and phosphorylation site revealed the existence of 2 ATP binding sites in the open conformation, the first one close to Phe475 in the N-domain, the other one close to Asp369 in the P-domain. However, binding of Mg2+•ATP to any of these sites in the “open conformation” may not lead to phosphorylation of Asp369. Additional conformations of the cytoplasmic loop were found wobbling between “open conformation” <==> “semi-open conformation <==> “closed conformation” in the absence of 2Mg2+•ATP. The cytoplasmic loop’s conformational change to the “semi-open conformation” -- characterized by a hydrogen bond between Arg543 and Asp611 -- triggers by binding of 2Mg2+•ATP to a single ATP site and conversion to the “closed conformation” the phosphorylation of Asp369 in the P-domain, and hence the start of Na+/K+-activated ATP hydrolysis.


2009 ◽  
pp. 583-589
Author(s):  
G Tejral ◽  
L Koláčná ◽  
W Schoner ◽  
E Amler

Molecular modeling of the H4-H5-loop of the α2 isoform of Na+/K+- ATPase in the E1 and E2 conformations revealed that twisting of the nucleotide (N) domain toward the phosphorylation (P) domain is connected with the formation of a short π-helix between Asp369 and Thr375. This conformational change close to the hinge region between the N-domain and the P-domain could be an important event leading to a bending of the N-domain by 64.7° and to a shortening of the distance between the ATP binding site and the phosphorylation site (Asp369) by 1.22 nm from 3.22 nm to 2.00 nm. It is hypothesized that this shortening mechanism is involved in the Na+-dependent formation of the Asp369 phospho-intermediate as part of the overall Na+/K+- ATPase activity.


2019 ◽  
Vol 19 (11) ◽  
pp. 914-926 ◽  
Author(s):  
Maiara Bernardes Marques ◽  
Michael González-Durruthy ◽  
Bruna Félix da Silva Nornberg ◽  
Bruno Rodrigues Oliveira ◽  
Daniela Volcan Almeida ◽  
...  

Background:PIM-1 is a kinase which has been related to the oncogenic processes like cell survival, proliferation, and multidrug resistance (MDR). This kinase is known for its ability to phosphorylate the main extrusion pump (ABCB1) related to the MDR phenotype.Objective:In the present work, we tested a new mechanistic insight on the AZD1208 (PIM-1 specific inhibitor) under interaction with chemotherapy agents such as Daunorubicin (DNR) and Vincristine (VCR).Materials and Methods:In order to verify a potential cytotoxic effect based on pharmacological synergism, two MDR cell lines were used: Lucena (resistant to VCR) and FEPS (resistant to DNR), both derived from the K562 non-MDR cell line, by MTT analyses. The activity of Pgp was ascertained by measuring accumulation and the directional flux of Rh123. Furthermore, we performed a molecular docking simulation to delve into the molecular mechanism of PIM-1 alone, and combined with chemotherapeutic agents (VCR and DNR).Results:Our in vitro results have shown that AZD1208 alone decreases cell viability of MDR cells. However, co-exposure of AZD1208 and DNR or VCR reverses this effect. When we analyzed the ABCB1 activity AZD1208 alone was not able to affect the pump extrusion. Differently, co-exposure of AZD1208 and DNR or VCR impaired ABCB1 activity, which could be explained by compensatory expression of abcb1 or other extrusion pumps not analyzed here. Docking analysis showed that AZD1208 is capable of performing hydrophobic interactions with PIM-1 ATP- binding-site residues with stronger interaction-based negative free energy (FEB, kcal/mol) than the ATP itself, mimicking an ATP-competitive inhibitory pattern of interaction. On the same way, VCR and DNR may theoretically interact at the same biophysical environment of AZD1208 and also compete with ATP by the PIM-1 active site. These evidences suggest that AZD1208 may induce pharmacodynamic interaction with VCR and DNR, weakening its cytotoxic potential in the ATP-binding site from PIM-1 observed in the in vitro experiments.Conclusion:Finally, the current results could have a pre-clinical relevance potential in the rational polypharmacology strategies to prevent multiple-drugs resistance in human leukemia cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document