scholarly journals Theoretical Investigations Into the Variability of the 15N Solid-State NMR Parameters Within an Antimicrobial Peptide Ampullosporin A

2018 ◽  
pp. S349-S356 ◽  
Author(s):  
J. CZERNEK ◽  
J. BRUS

The solid-state NMR measurements play an indispensable role in studies of interactions between biological membranes and peptaibols, which are amphipathic oligopeptides with a high abundance of α-aminobutyric acid (Aib). The solid-state NMR investigations are important in establishing the molecular models of the pore forming and antimicrobial properties of peptaibols, but rely on certain simplifications. Some of the underlying assumptions concern the parameters describing the 15N NMR chemical shielding tensor (CST) of the amide nitrogens in Aib and in conventional amino acids. Here the density functional theory (DFT) based calculations were applied to the known crystal structure of one of peptaibols, Ampullosporin A, in order to explicitly describe the variation of the 15N NMR parameters within its backbone. Based on the DFT computational data it was possible to verify the validity of the assumptions previously made about the differences between Aib and other amino acids in the isotropic part of the CST. Also the trends in the magnitudes and orientations of the anisotropic components of the CST, as revealed by the DFT calculations of the full periodic structure of Ampullosporin A, were thoroughly analyzed, and may be employed in future studies of peptaibols.


2021 ◽  
Author(s):  
Kent Griffith ◽  
Fenghua Ding ◽  
Steven Flynn

Indium and bismuth are technologically important elements, in particular as oxides for optoelectronic applications. <sup>115</sup>In and <sup>209</sup>Bi are both I = 9/2 nuclei with high natural abundances and moderately high frequencies but large nuclear electric quadrupole moments. Leveraging the quadrupolar interaction as a measure of local symmetry and polyhedral distortions for these nuclei could provide powerful insights on a range of applied materials. However, the absence of reported NMR parameters on these nuclei, particularly in oxides, hinders their use by the broader materials community. In this contribution, solid-state <sup>115</sup>In and <sup>209</sup>Bi NMR of three recently discovered quaternary bismuth or indium oxides are reported, supported by density functional theory calculations, numerical simulations, diffraction, and additional multinuclear (<sup>27</sup>Al, <sup>69,71</sup>Ga, <sup>121</sup>Sb) solid-state NMR measurements. The compounds LiIn<sub>2</sub>SbO<sub>6</sub>, BiAlTeO<sub>6</sub>, and BiGaTeO<sub>6</sub> are measured without special equipment at 9.4 T, demonstrating that wideline techniques such as the QCPMG pulse sequence and frequency-stepped acquisition can enable straightforward extraction of quadrupolar tensor information in I = 9/2 <sup>115</sup>In and <sup>209</sup>Bi even in sites with large quadrupolar coupling constants. Relationships are described between the NMR observables and local site symmetry. These are amongst the first reports of the NMR parameters of <sup>115</sup>In, <sup>121</sup>Sb, and <sup>209</sup>Bi in oxides.



2021 ◽  
Author(s):  
Kent Griffith ◽  
Fenghua Ding ◽  
Steven Flynn

Indium and bismuth are technologically important elements, in particular as oxides for optoelectronic applications. <sup>115</sup>In and <sup>209</sup>Bi are both I = 9/2 nuclei with high natural abundances and moderately high frequencies but large nuclear electric quadrupole moments. Leveraging the quadrupolar interaction as a measure of local symmetry and polyhedral distortions for these nuclei could provide powerful insights on a range of applied materials. However, the absence of reported NMR parameters on these nuclei, particularly in oxides, hinders their use by the broader materials community. In this contribution, solid-state <sup>115</sup>In and <sup>209</sup>Bi NMR of three recently discovered quaternary bismuth or indium oxides are reported, supported by density functional theory calculations, numerical simulations, diffraction, and additional multinuclear (<sup>27</sup>Al, <sup>69,71</sup>Ga, <sup>121</sup>Sb) solid-state NMR measurements. The compounds LiIn<sub>2</sub>SbO<sub>6</sub>, BiAlTeO<sub>6</sub>, and BiGaTeO<sub>6</sub> are measured without special equipment at 9.4 T, demonstrating that wideline techniques such as the QCPMG pulse sequence and frequency-stepped acquisition can enable straightforward extraction of quadrupolar tensor information in I = 9/2 <sup>115</sup>In and <sup>209</sup>Bi even in sites with large quadrupolar coupling constants. Relationships are described between the NMR observables and local site symmetry. These are amongst the first reports of the NMR parameters of <sup>115</sup>In, <sup>121</sup>Sb, and <sup>209</sup>Bi in oxides.



2021 ◽  
Vol 60 (8) ◽  
pp. 6016-6026
Author(s):  
Aydar Rakhmatullin ◽  
Maxim S. Molokeev ◽  
Graham King ◽  
Ilya B. Polovov ◽  
Konstantin V. Maksimtsev ◽  
...  


2016 ◽  
Vol 52 (12) ◽  
pp. 2577-2580 ◽  
Author(s):  
Farhan Ahmad Pasha ◽  
Anissa Bendjeriou-Sedjerari ◽  
Edy Abou-Hamad ◽  
Kuo-Wei Huang ◽  
Jean-Marie Basset

Density functional theory calculations and 2D 1H–13C HETCOR solid state NMR spectroscopy prove that CO2 can be used to probe, by its own reactivity, different types of N-donor surface ligands on SBA15-supported ZrIV hydrides: [(Si–O–)(Si–N)[Zr]H] and [(Si–NH–)(Si–X–)[Zr]H2] (XO or NH).



2021 ◽  
Vol 9 ◽  
Author(s):  
Ioan Stroia ◽  
Ionuţ -Tudor Moraru ◽  
Maria Miclăuş ◽  
Ion Grosu ◽  
Claudia Lar ◽  
...  

In the context of helical chirality, bridging of biphenyl units leads to banister-type compounds and the stability of the resulted atropisomers may increase dramatically if suitable changes are performed in the linker unit that coils around the biphenyl moiety. A rigorous density functional theory (DFT) study was conducted for macrocycles containing rigid oxime ether segments connected to the biphenyl backbone in order to determine how the rotation barriers are influenced by the presence of either a flexible oligoethyleneoxide or a more rigid m–xylylene component in the macrocycle. The calculated values for the racemization barrier were in good agreement with those obtained experimentally and confirm the benefit of introducing a more rigid unit in the macrocycle on the stability of atropisomers. Solid-state data were obtained and computed data were used to assess the contribution brought by supramolecular associations observed in the lattice to the stabilization of the crystal structure. Beside introducing rigidity in the linker, complexation of flexible macrocycles with alkali metal ions is also contributing to the stability of atropisomers, leading to values for the racemization barrier matching that of the rigid macrocycle. Using diethylammonium cation as guest for the macrocycle, a spectacular increase in the barrier to rotation was observed for the resulted pseudo[2]rotaxane.



2009 ◽  
Vol 87 (1) ◽  
pp. 348-360 ◽  
Author(s):  
Bryan A Demko ◽  
Roderick E Wasylishen

A 31P and 77Se solid-state NMR investigation of the iminobis(diorganophosphine chalcogenide) HN(R2PE)2 (R = Ph,iPr; E = O, S, Se) systems is presented. The NMR results are discussed in terms of the known HN(R2PE)2 structures available from X-ray crystallography. The phosphorus chemical shift tensors are found to be sensitive to the nature of the alkyl and chalcogen substituents. The nature of the R group also influences the selenium chemical shift tensors of HN(R2PSe)2 (R = Ph, iPr), which are shown to be sensitive to hydrogen bonding in the dimer structure of HN(Ph2PSe)2 and to the presence of disorder in the case of HN(iPr2PSe)2. Scalar relativistic ZORA DFT nuclear magnetic shielding tensor calculations were performed yielding the orientations of the corresponding chemical shift tensors. A theoretical investigation into the effect of the E-P···P-E “torsion” angle on the phosphorus and selenium chemical shift tensors of a truncated HN(Me2PSe)2 system indicates that the electronic effect of the alkyl group on the respective nuclear magnetic shielding tensors are more important than the steric effect of the E-P···P-E torsion angle.Key words: iminobis(diorganophosphine chalcogenide), solid-state NMR, 31P NMR, 77Se NMR, ZORA DFT.



Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5489
Author(s):  
Alexander Vogel ◽  
Mathias Bosse ◽  
Marcel Gauglitz ◽  
Sarah Wistuba ◽  
Peter Schmidt ◽  
...  

We report data on the structural dynamics of the neuropeptide Y (NPY) G-protein-coupled receptor (GPCR) type 1 (Y1R), a typical representative of class A peptide ligand GPCRs, using a combination of solid-state NMR and molecular dynamics (MD) simulation. First, the equilibrium dynamics of Y1R were studied using 15N-NMR and quantitative determination of 1H-13C order parameters through the measurement of dipolar couplings in separated-local-field NMR experiments. Order parameters reporting the amplitudes of the molecular motions of the C-H bond vectors of Y1R in DMPC membranes are 0.57 for the Cα sites and lower in the side chains (0.37 for the CH2 and 0.18 for the CH3 groups). Different NMR excitation schemes identify relatively rigid and also dynamic segments of the molecule. In monounsaturated membranes composed of longer lipid chains, Y1R is more rigid, attributed to a higher hydrophobic thickness of the lipid membrane. The presence of an antagonist or NPY has little influence on the amplitude of motions, whereas the addition of agonist and arrestin led to a pronounced rigidization. To investigate Y1R dynamics with site resolution, we conducted extensive all-atom MD simulations of the apo and antagonist-bound state. In each state, three replicas with a length of 20 μs (with one exception, where the trajectory length was 10 μs) were conducted. In these simulations, order parameters of each residue were determined and showed high values in the transmembrane helices, whereas the loops and termini exhibit much lower order. The extracellular helix segments undergo larger amplitude motions than their intracellular counterparts, whereas the opposite is observed for the loops, Helix 8, and termini. Only minor differences in order were observed between the apo and antagonist-bound state, whereas the time scale of the motions is shorter for the apo state. Although these relatively fast motions occurring with correlation times of ns up to a few µs have no direct relevance for receptor activation, it is believed that they represent the prerequisite for larger conformational transitions in proteins.



2009 ◽  
Vol 113 (42) ◽  
pp. 18163-18172 ◽  
Author(s):  
Irène Lopes ◽  
Lingyu Piao ◽  
Lorenzo Stievano ◽  
Jean-François Lambert


2014 ◽  
Vol 70 (8) ◽  
pp. 784-789 ◽  
Author(s):  
Xiaozhou Li ◽  
Andrew D. Bond ◽  
Kristoffer E. Johansson ◽  
Jacco Van de Streek

The crystal structure of the title compound, C11H13N3O2S2, has been determined previously on the basis of refinement against laboratory powder X-ray diffraction (PXRD) data, supported by comparison of measured and calculated13C solid-state NMR spectra [Hanganet al.(2010).Acta Cryst.B66, 615–621]. The molecule is tautomeric, and was reported as an amine tautomer [systematic name:N-(5-ethyl-1,3,4-thiadiazol-2-yl)-p-toluenesulfonamide], rather than the correct imine tautomer. The protonation site on the molecule's 1,3,4-thiadiazole ring is indicated by the intermolecular contacts in the crystal structure: N—H...O hydrogen bonds are established at the correct site, while the alternative protonation site does not establish any notable intermolecular interactions. The two tautomers provide essentially identical Rietveld fits to laboratory PXRD data, and therefore they cannot be directly distinguished in this way. However, the correct tautomer can be distinguished from the incorrect one by previously reported quantitative criteria based on the extent of structural distortion on optimization of the crystal structure using dispersion-corrected density functional theory (DFT-D) calculations. Calculation of the13C SS-NMR spectrum based on the correct imine tautomer also provides considerably better agreement with the measured13C SS-NMR spectrum.



Sign in / Sign up

Export Citation Format

Share Document