Fatality and Operational Specificity of Helicopter Accidents on the Ground

2021 ◽  
Vol 92 (7) ◽  
pp. 593-596
Author(s):  
Alexander J. de Voogt ◽  
Caio Hummel Hohl ◽  
Hilary Kalagher

INTRODUCTION: Accidents with aircraft standing are more likely with helicopters than fixed-wing aircraft due to the common presence of off-airport landings and the possibility of the rotor system to strike objects in its immediate surroundings.METHODS: A total of 115 accidents involving helicopters characterized as standing as a broad phase of flight were selected from the NTSB online database for the period 1998 until 2018.RESULTS: Accidents reporting fatal (8.7) or serious injuries (7.8) were significantly less likely to occur when the aircraft was substantially damaged (84.3) or destroyed (5.2). The majority of the cases occurred after off-airport landings (57.4), which were reported significantly more often in Alaska (N= 15). A main rotor strike with an individual was at the basis of each of the 10 fatal accidents in the dataset and in 8 of these cases the cause of the accident was attributed to the victim. None of the accidents occurred in instrument meteorological conditions, but, in particular, high winds and gusts proved a main cause of accident (18.3).CONCLUSION: Pilot, passengers, and crew endangered themselves when they were outside the aircraft while the rotors were still turning. Helicopter operating manuals should highlight the limitations and dangers for wind and wind gusts not only during takeoff and flight, but specifically when standing.de Voogt AJ, Hummel C, Kalagher H. Fatality and operational specificity of helicopter accidents on the ground. Aerosp Med Hum Perform. 2021; 92(7):593596.

Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 994
Author(s):  
Alex de Voogt ◽  
Hilary Kalagher ◽  
Andrew Diamond

Helicopters have the ability to make maneuvers or precautionary off-airport landings to avoid flights into instrument meteorological conditions (IMC) such as fog. Flight accidents in which fog was encountered as well as inadvertent and intentional flights into fog were examined to understand their occurrence. A 25-year period in the United States using the National Transportation Safety Board online database was used to collect 109 accident reports of which 73 (67%) were fatal. Pilots flying intentionally into IMC were more likely to be a part of a fatal accident than those who did so inadvertently. Those pilots who were reported as being under pressure when encountering fog conditions were also more likely to be in an accident. The findings confirm a high prevalence and an added danger to intentional flights into IMC. In addition, decision-making under pressure when encountering IMC conditions is now linked to a higher proportion of fatalities, emphasizing that helicopter pilots should be made aware of these specific decision-making circumstances in their operations.


Author(s):  
Hilary Kalagher ◽  
Alex de Voogt ◽  
Colin Boulter

Abstract. Situational awareness is a concept increasingly used in aircraft accident investigation reports. We analyzed 94 general aviation accidents in which situational awareness was mentioned by the National Transportation Safety Board investigator to determine factors that are significantly more often associated with fatality. We found a consistent use of the situational awareness concept, mainly applied to situations in which aircraft inadvertently collided with each other, with other man-made objects, and with various kinds of terrain. A significantly higher proportion of fatal accidents occurred during nighttime, in instrument meteorological conditions, or low visibility conditions. In addition, flights occurring during the cruise phase or in combination with spatial or geographical disorientation proved most often fatal.


2012 ◽  
Vol 50 (3) ◽  
pp. 472-477 ◽  
Author(s):  
Mark W. Wiggins ◽  
David R. Hunter ◽  
David O’Hare ◽  
Monica Martinussen

2019 ◽  
Vol 255 ◽  
pp. 02011
Author(s):  
Ahmed M. Abdelrhman ◽  
M. Salman Leong ◽  
Y.H. Ali ◽  
Iftikhar Ahmad ◽  
Christina G. Georgantopoulou ◽  
...  

This paper studies the diagnosis of twisted blade in a multi stages rotor system using adapted wavelet transform and casing vibration. The common detection method (FFT) is effective only if sever blade faults occurred while the minor faults usually remain undetected. Wavelet analysis as alternative technique is still unable to fulfill the fault detection and diagnosis accurately due to its inadequate time-frequency resolution. In this paper, wavelet is adapted and its time-frequency is improved. Experimental study was undertaken to simulate multi stages rotor system. Results showed that the adapted wavelet analysis is effective in twisted blade diagnosis compared to the conventional one.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Nahyeon Roh ◽  
Sejong Oh ◽  
Donghun Park

The tail rotor of a helicopter operating under low-speed crosswind undergoes highly complex flow due to the interaction between the main rotor, fuselage, and tail rotor system. In this study, numerical simulations have been conducted on the complete configuration of a helicopter with a ducted fan tail rotor system (comprising a main rotor, ducted fan tail rotor, fuselage, and empennage) to analyze the wake interaction in hovering flight under various crosswind directions. The flow characteristics around the tail rotor, the tail rotor thrust, and the yawing moment of the helicopter are investigated and evaluated. The aerodynamic forces are compared with those of a helicopter with an open-type tail rotor. The results indicate that the aerodynamic performance of the ducted fan tail rotor is highly affected by the wakes of both the main rotor and port wing. Nevertheless, the helicopter with a ducted fan tail rotor is observed to be much more directionally stable under various crosswind directions, than that with an open-type tail rotor. This is because the rotor is protected by the fixed part of the tail rotor system in the former case.


Author(s):  
Jayde King ◽  
Yolanda Ortiz ◽  
Beth Blickensderfer ◽  
Emalee Christy

General Aviation (GA) weather related accidents have steadily remained the most fatal accidents and incidents in the GA flight community. The majority of these accidents involve low-experienced Visual Flight Rule (VFR) pilots, inadvertently encountering Instrument Meteorological Conditions (IMC). Previous research indicates, poor inflight weather avoidance could stem from insufficient preflight weather planning. Further investigation reveals, pilots’ face many challenges during the preflight planning process, including: poor weather product interpretation/ usability, decision making biases and errors, and inadequate aviation weather experience. However, with new technology on the rise, a preflight decision support tool may help guide novice pilots through the preflight process successfully. This paper will discuss the challenges novice pilots encounter during the preflight process and offer recommendations for applying a preflight decision support tool as a solution.


Sign in / Sign up

Export Citation Format

Share Document