scholarly journals Sequence Alignment Algorithms for Intrusion Detection in the Internet of Things

2020 ◽  
Vol 23 (4) ◽  
pp. 397-404
Author(s):  
M. Kalinin ◽  
V. Krundyshev

The paper reviews the intrusion detection approach based on bioinformatics algorithms for alignment and comparing of the nucleotide sequences. Sequence alignment is a natureclose computational procedure for matching the coded strings by searching for the regions of individual characteristics that are located in the same order. A calculated rank of similarity is used instead of equity checking to estimate the distance between a sequence of the monitored operational acts and a generalized intrusion pattern. Multiple alignment schema is more effective and accurate than the Smith–Waterman local alignment due to ability to find few blocks of similarity. In comparison with a traditional signature-based IDS, it is found that the nature-inspired approach provides the better work characteristics. The experimental study have shown that new approach demonstrates high, 99 percent, level of accuracy.

Author(s):  
Ming Huang ◽  
Nilay D. Shah ◽  
Lixia Yao

Abstract Background Sequence alignment is a way of arranging sequences (e.g., DNA, RNA, protein, natural language, financial data, or medical events) to identify the relatedness between two or more sequences and regions of similarity. For Electronic Health Records (EHR) data, sequence alignment helps to identify patients of similar disease trajectory for more relevant and precise prognosis, diagnosis and treatment of patients. Methods We tested two cutting-edge global sequence alignment methods, namely dynamic time warping (DTW) and Needleman-Wunsch algorithm (NWA), together with their local modifications, DTW for Local alignment (DTWL) and Smith-Waterman algorithm (SWA), for aligning patient medical records. We also used 4 sets of synthetic patient medical records generated from a large real-world EHR database as gold standard data, to objectively evaluate these sequence alignment algorithms. Results For global sequence alignments, 47 out of 80 DTW alignments and 11 out of 80 NWA alignments had superior similarity scores than reference alignments while the rest 33 DTW alignments and 69 NWA alignments had the same similarity scores as reference alignments. Forty-six out of 80 DTW alignments had better similarity scores than NWA alignments with the rest 34 cases having the equal similarity scores from both algorithms. For local sequence alignments, 70 out of 80 DTWL alignments and 68 out of 80 SWA alignments had larger coverage and higher similarity scores than reference alignments while the rest DTWL alignments and SWA alignments received the same coverage and similarity scores as reference alignments. Six out of 80 DTWL alignments showed larger coverage and higher similarity scores than SWA alignments. Thirty DTWL alignments had the equal coverage but better similarity scores than SWA. DTWL and SWA received the equal coverage and similarity scores for the rest 44 cases. Conclusions DTW, NWA, DTWL and SWA outperformed the reference alignments. DTW (or DTWL) seems to align better than NWA (or SWA) by inserting new daily events and identifying more similarities between patient medical records. The evaluation results could provide valuable information on the strengths and weakness of these sequence alignment methods for future development of sequence alignment methods and patient similarity-based studies.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Nauman Ahmed ◽  
Jonathan Lévy ◽  
Shanshan Ren ◽  
Hamid Mushtaq ◽  
Koen Bertels ◽  
...  

Abstract Background Due the computational complexity of sequence alignment algorithms, various accelerated solutions have been proposed to speedup this analysis. NVBIO is the only available GPU library that accelerates sequence alignment of high-throughput NGS data, but has limited performance. In this article we present GASAL2, a GPU library for aligning DNA and RNA sequences that outperforms existing CPU and GPU libraries. Results The GASAL2 library provides specialized, accelerated kernels for local, global and all types of semi-global alignment. Pairwise sequence alignment can be performed with and without traceback. GASAL2 outperforms the fastest CPU-optimized SIMD implementations such as SeqAn and Parasail, as well as NVIDIA’s own GPU-based library known as NVBIO. GASAL2 is unique in performing sequence packing on GPU, which is up to 750x faster than NVBIO. Overall on Geforce GTX 1080 Ti GPU, GASAL2 is up to 21x faster than Parasail on a dual socket hyper-threaded Intel Xeon system with 28 cores and up to 13x faster than NVBIO with a query length of up to 300 bases and 100 bases, respectively. GASAL2 alignment functions are asynchronous/non-blocking and allow full overlap of CPU and GPU execution. The paper shows how to use GASAL2 to accelerate BWA-MEM, speeding up the local alignment by 20x, which gives an overall application speedup of 1.3x vs. CPU with up to 12 threads. Conclusions The library provides high performance APIs for local, global and semi-global alignment that can be easily integrated into various bioinformatics tools.


2016 ◽  
Vol 11 (3) ◽  
pp. 375-381
Author(s):  
Yu Zhang ◽  
Jian Tai He ◽  
Yangde Zhang ◽  
Ke Zuo

2014 ◽  
Vol 7 (2) ◽  
pp. 195-203 ◽  
Author(s):  
Richard A. Formato

Variable Z0(VZ0) antenna technology is a new design or optimization methodology applicable to any antenna on any platform designed or optimized with any procedure. It should be particularly useful for wireless devices populating the Internet of Things. VZ0expands the design or decision space by adding another degree of freedom invariably leading to better antennas. A simple design example illustrates its effectiveness.


Sign in / Sign up

Export Citation Format

Share Document