scholarly journals Electromagnetic properties of a composite medium comprising chains of tunnel-coupled carbon nanotubes

Author(s):  
Aliaksandr V. Melnikau ◽  
Mikhail V. Shuba

When creating a model of a composite medium based on carbon nanotubes in the gigahertz and subterahertz ranges, it is necessary to take into account the tunnel coupling between nanoparticles. To simplify the consideration, we present a model of a composite medium consisting of the same randomly oriented linear chains of parallel single walled metallic carbon nanotubes connected by tunnel contacts. The problem of scattering of electromagnetic radiation by the chains was solved through the application of the integral equation technique of classical electrodynamics and the Landauer – Buttiker formalism for quantum transport. It is shown that electron tunnelling between the nanotubes leads to the electromagnetic size effects in chains of finite length. In this case, in the gigahertz frequency range, there is a regime in which the comparable in magnitude real and imaginary parts of the effective permittivity of the composite medium decrease with increasing frequency that is often observed in experiments. It has been found that size effects can manifest themselves within small sections of the chain limited by contacts of low conductivity. The obtained results provide an understanding of the physical mechanisms responsible for the frequency dispersion of the permittivity of composite materials based on carbon nanotubes.

2019 ◽  
Vol 9 (20) ◽  
pp. 4388 ◽  
Author(s):  
Artyom Plyushch ◽  
Jan Macutkevič ◽  
Polina Kuzhir ◽  
Aliaksei Sokal ◽  
Konstantin Lapko ◽  
...  

Hybrid composite materials based on an aluminium phosphate matrix with silicon carbide whiskers and multi-walled carbon nanotubes were studied in a wide frequency range (20 Hz to 36 GHz). It was demonstrated, that the addition of the silicon carbide whiskers enhances the dielectric permittivity and conductivity. This was explained by the difference in tunnelling parameters. Hybrid ceramics with nanotubes and whiskers also exhibits substantially improved electromagnetic shielding properties. The hybrid ceramics with 10 wt. % silicon carbide whiskers and a 1 mm thick 1.5 wt. % carbon nanotube layer, show higher than 50% absorption of electromagnetic radiation.


2019 ◽  
Vol 2 (5) ◽  
pp. 3021-3030 ◽  
Author(s):  
Ekaterina Anikina ◽  
Amitava Banerjee ◽  
Valery Beskachko ◽  
Rajeev Ahuja

Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1208 ◽  
Author(s):  
Rumiana Kotsilkova ◽  
Evgeni Ivanov ◽  
Vladimir Georgiev ◽  
Radost Ivanova ◽  
Dzhihan Menseidov ◽  
...  

Poly(lactic) acid nanocomposites filled with graphene nanoplatelets (GNPs) and multiwall carbon nanotubes (MWCNTs) are studied, varying the filler size, shape, and content within 1.5–12 wt.%. The effects of the intrinsic characteristics of nanofillers and structural organization of nanocomposites on mechanical, electrical, thermal, and electromagnetic properties enhancement are investigated. Three essential rheological parameters are identified, which determine rheology–structure–property relations in nanocomposites: the degree of dispersion, percolation threshold, and interfacial interactions. Above the percolation threshold, depending on the degree of dispersion, three structural organizations are observed in nanocomposites: homogeneous network (MWCNTs), segregated network (MWCNTs), and aggregated structure (GNPs). The rheological and structural parameters depend strongly on the type, size, shape, specific surface area, and functionalization of the fillers. Consequently, the homogeneous and segregated network structures resulted in a significant enhancement of tensile mechanical properties and a very low electrical percolation threshold, in contrast to the aggregated structure. The high filler density in the polymer and the low number of graphite walls in MWCNTs are found to be determinant for the remarkable shielding efficiency (close to 100%) of nanocomposites. Moreover, the 2D shaped GNPs predominantly enhance the thermal conductivity compared to the 1D shaped MWCNTs. The proposed essential structural parameters may be successfully used for the design of polymer nanocomposites with enhanced multifunctional properties for 3D printing applications.


1998 ◽  
Vol 81 (9) ◽  
pp. 1869-1872 ◽  
Author(s):  
C.-H. Kiang ◽  
M. Endo ◽  
P. M. Ajayan ◽  
G. Dresselhaus ◽  
M. S. Dresselhaus

Sign in / Sign up

Export Citation Format

Share Document