scholarly journals Development of PET tracers for M2-macrophages

2021 ◽  
Author(s):  
◽  
Bruna Fernandes
Keyword(s):  
2014 ◽  
Vol 226 (02) ◽  
Author(s):  
M Barros ◽  
P Segges ◽  
G Vera-Lozada ◽  
R Hassan ◽  
G Niedobitek

2015 ◽  
Vol 10 (S 01) ◽  
Author(s):  
K Moganti ◽  
F Li ◽  
S Riehman ◽  
H Klüter ◽  
M Harmsen ◽  
...  

2020 ◽  
Author(s):  
M Rullmann ◽  
PL Flender ◽  
V Villemagne ◽  
O Sabri ◽  
H Barthel

Author(s):  
S Thees ◽  
B Neumaier ◽  
G Glatting ◽  
S Deisenhofer ◽  
T Kahn ◽  
...  
Keyword(s):  

2020 ◽  
Vol 12 (45) ◽  
pp. 63-66
Author(s):  
Halim Nagem Filho ◽  
Reinaldo Francisco Maia ◽  
Reinaldo Missaka ◽  
Nasser Hussein Fares

The osseointegration is the stable and functional union between the bone and a titanium surface. A new bone can be found on the surface of the implant about 1 week after its installation; the bone remodeling begins between 6 and 12 weeks and continues throughout life. After the implant insertion, depending on the energy of the surface, the plasma fluid immediately adheres, in close contact with the surface, promoting the adsorption of proteins and inducing the indirect interaction of the cells with the material. Macrophages are cells found in the tissues and originated from bone marrow monocytes. The M1 macrophages orchestrate the phagocytic phase in the inflammatory region and also produce inflammatory cytokines involved with the chronic inflammation and the cleaning of the wound and damaged tissues from bacteria. On the other hand, alternative-activated macrophages (M2) are activated by IL-10, the immune complex. Its main function consists on regulating negatively the inflammation through the secretion of the immunosuppressant IL-10. The M2 macrophages present involvement with the immunosuppression, besides having a low capacity for presenting antigens and high production of cytokines; these can be further divided into M2a, M2b, and M2c, based on the gene expression profile.


2020 ◽  
Vol 133 (4) ◽  
pp. 1010-1019 ◽  
Author(s):  
Hiroaki Takei ◽  
Jun Shinoda ◽  
Soko Ikuta ◽  
Takashi Maruyama ◽  
Yoshihiro Muragaki ◽  
...  

OBJECTIVEPositron emission tomography (PET) is important in the noninvasive diagnostic imaging of gliomas. There are many PET studies on glioma diagnosis based on the 2007 WHO classification; however, there are no studies on glioma diagnosis using the new classification (the 2016 WHO classification). Here, the authors investigated the relationship between uptake of 11C-methionine (MET), 11C-choline (CHO), and 18F-fluorodeoxyglucose (FDG) on PET imaging and isocitrate dehydrogenase (IDH) status (wild-type [IDH-wt] or mutant [IDH-mut]) in astrocytic and oligodendroglial tumors according to the 2016 WHO classification.METHODSIn total, 105 patients with newly diagnosed cerebral gliomas (6 diffuse astrocytomas [DAs] with IDH-wt, 6 DAs with IDH-mut, 7 anaplastic astrocytomas [AAs] with IDH-wt, 24 AAs with IDH-mut, 26 glioblastomas [GBMs] with IDH-wt, 5 GBMs with IDH-mut, 19 oligodendrogliomas [ODs], and 12 anaplastic oligodendrogliomas [AOs]) were included. All OD and AO patients had both IDH-mut and 1p/19q codeletion. The maximum standardized uptake value (SUV) of the tumor/mean SUV of normal cortex (T/N) ratios for MET, CHO, and FDG were calculated, and the mean T/N ratios of DA, AA, and GBM with IDH-wt and IDH-mut were compared. The diagnostic accuracy for distinguishing gliomas with IDH-wt from those with IDH-mut was assessed using receiver operating characteristic (ROC) curve analysis of the mean T/N ratios for the 3 PET tracers.RESULTSThere were significant differences in the mean T/N ratios for all 3 PET tracers between the IDH-wt and IDH-mut groups of all histological classifications (p < 0.001). Among the 27 gliomas with mean T/N ratios higher than the cutoff values for all 3 PET tracers, 23 (85.2%) were classified into the IDH-wt group using ROC analysis. In DA, there were no significant differences in the T/N ratios for MET, CHO, and FDG between the IDH-wt and IDH-mut groups. In AA, the mean T/N ratios of all 3 PET tracers in the IDH-wt group were significantly higher than those in the IDH-mut group (p < 0.01). In GBM, the mean T/N ratio in the IDH-wt group was significantly higher than that in the IDH-mut group for both MET (p = 0.034) and CHO (p = 0.01). However, there was no significant difference in the ratio for FDG.CONCLUSIONSPET imaging using MET, CHO, and FDG was suggested to be informative for preoperatively differentiating gliomas according to the 2016 WHO classification, particularly for differentiating IDH-wt and IDH-mut tumors.


2019 ◽  
Author(s):  
Xintong Hu ◽  
Yue Gu ◽  
Songchen Zhao ◽  
Shucheng Hua ◽  
Yanfang Jiang

2020 ◽  
Author(s):  
Weihua Zhao ◽  
David R. Beers ◽  
Jason R. Thonhoff ◽  
Aaron D. Thome ◽  
Alireza Faridar ◽  
...  
Keyword(s):  

2016 ◽  
Vol 22 (38) ◽  
pp. 5779-5785 ◽  
Author(s):  
Gert Luurtsema ◽  
Philip Elsinga ◽  
Rudi Dierckx ◽  
Ronald Boellaard ◽  
Aren Waarde

Sign in / Sign up

Export Citation Format

Share Document